The stability of cemented backfill mass is important to keep miners and equipment safe in underground backfill miming.The stress-strain behavior, resistivity and thermal infrared(TIR) characteristics of backfill mass ...The stability of cemented backfill mass is important to keep miners and equipment safe in underground backfill miming.The stress-strain behavior, resistivity and thermal infrared(TIR) characteristics of backfill mass under uniaxial compression were investigated. The monitoring system consisted of a TIR observation system, a stress-strain monitoring system and a resistivity measurement system. Precursory information for impending failure of cemented backfill mass was collected, including TIR, strain and resistivity precursors. The sensitivity and difference of different monitoring information to the same failure event were compared.The results show that the time-space evolution process of the resistivity and TIR is basically the same as the whole process from compression deformation to failure of backfill mass, and the time variation of resistivity and TIR is obviously characterized by stage.The resistivity precursor turns out earlier than the TIR and the strain. The resistivity relation with loading compression is anti-symmetry, decreasing as the compression stress increases before the peak strength of backfill mass. However, when the backfill mass enters into the phase of failure, the resistivity starts to increase as the stress increases. The change of the resistivity growth direction can be regarded as the resistivity-caution-point for the failure of backfill mass under uniaxial compression. It is also indicated that the TIR information mainly represents the surface temperature evolution in the process of compression before the backfill enters into the plastic-yield state. It can be a valuable tool to obtain the precursors for failure of cemented backfill mass for backfill mines.展开更多
Hydrophobic ZSM-5 zeolite filled polydimethylsiloxane (PDMS) composite membranes with Nylon micro-filtration membrane as the support layer were prepared to separate acetaldehyde from its aqueous solution. The compos...Hydrophobic ZSM-5 zeolite filled polydimethylsiloxane (PDMS) composite membranes with Nylon micro-filtration membrane as the support layer were prepared to separate acetaldehyde from its aqueous solution. The composite membranes were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. Their structural morphology and thermal stability were also examined. The swelling study showed that the composite membranes presented higher degree of swelling in aqueous solution of acetaldehyde than in pure water at 25℃,展开更多
基金Projects(51504256,51004109)supported by the National Natural Science Foundation of ChinaProject(zdsys006)supported by State Key Laboratory of Safety and Health for Metal Mines,ChinaProject(2013BAB02B04)supported by the National Science and Technology Support Plan,China
文摘The stability of cemented backfill mass is important to keep miners and equipment safe in underground backfill miming.The stress-strain behavior, resistivity and thermal infrared(TIR) characteristics of backfill mass under uniaxial compression were investigated. The monitoring system consisted of a TIR observation system, a stress-strain monitoring system and a resistivity measurement system. Precursory information for impending failure of cemented backfill mass was collected, including TIR, strain and resistivity precursors. The sensitivity and difference of different monitoring information to the same failure event were compared.The results show that the time-space evolution process of the resistivity and TIR is basically the same as the whole process from compression deformation to failure of backfill mass, and the time variation of resistivity and TIR is obviously characterized by stage.The resistivity precursor turns out earlier than the TIR and the strain. The resistivity relation with loading compression is anti-symmetry, decreasing as the compression stress increases before the peak strength of backfill mass. However, when the backfill mass enters into the phase of failure, the resistivity starts to increase as the stress increases. The change of the resistivity growth direction can be regarded as the resistivity-caution-point for the failure of backfill mass under uniaxial compression. It is also indicated that the TIR information mainly represents the surface temperature evolution in the process of compression before the backfill enters into the plastic-yield state. It can be a valuable tool to obtain the precursors for failure of cemented backfill mass for backfill mines.
基金Supported by Shanghai Natural Science Foundation (10ZR1432000)Kwang-Hua Fund for College of Civil Engineering,Tongji University
文摘Hydrophobic ZSM-5 zeolite filled polydimethylsiloxane (PDMS) composite membranes with Nylon micro-filtration membrane as the support layer were prepared to separate acetaldehyde from its aqueous solution. The composite membranes were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. Their structural morphology and thermal stability were also examined. The swelling study showed that the composite membranes presented higher degree of swelling in aqueous solution of acetaldehyde than in pure water at 25℃,