Orthorhombic HoMnO3(HMO) thin films were grown epitaxially on LaAlO3(001) substrates by using pulsed laser deposition technique. The films showed perfect orthorhombic crystallization and were well-aligned with the sub...Orthorhombic HoMnO3(HMO) thin films were grown epitaxially on LaAlO3(001) substrates by using pulsed laser deposition technique. The films showed perfect orthorhombic crystallization and were well-aligned with the substrates. The in-plane dielectric constant and loss of HMO films were measured as functions of temperature(80–300 K) and frequency(120 Hz–100 kHz) by using coplanar interdigital electrodes. Two thermally activated dielectric relaxations were found, and the respective peaks shifted to higher temperatures as the measuring frequency increased. The in-plane dielectric properties of epitaxial orthorhombic HMO films were considered as universal dielectric response behavior, and the dipolar effects and the hopping conductivity induced by the charge carriers were used to explain the results.展开更多
基金supported by Shandong Province Natural Science Foundation of China(Grant No.ZR2011AM014)
文摘Orthorhombic HoMnO3(HMO) thin films were grown epitaxially on LaAlO3(001) substrates by using pulsed laser deposition technique. The films showed perfect orthorhombic crystallization and were well-aligned with the substrates. The in-plane dielectric constant and loss of HMO films were measured as functions of temperature(80–300 K) and frequency(120 Hz–100 kHz) by using coplanar interdigital electrodes. Two thermally activated dielectric relaxations were found, and the respective peaks shifted to higher temperatures as the measuring frequency increased. The in-plane dielectric properties of epitaxial orthorhombic HMO films were considered as universal dielectric response behavior, and the dipolar effects and the hopping conductivity induced by the charge carriers were used to explain the results.