The increasing emphasis on the sub\|micron CMOS/SOS devices has placed a demand for high quality thin silicon on sapphire (SOS) films with thickness of the order 100-200nm. It is demonstrated that the crystalline qua...The increasing emphasis on the sub\|micron CMOS/SOS devices has placed a demand for high quality thin silicon on sapphire (SOS) films with thickness of the order 100-200nm. It is demonstrated that the crystalline quality of as\|grown thin SOS films by chemically vapor deposition method can be greatly improved by solid phase epitaxy (SPE) process: implantation of self\|silicon ions and subsequent thermal annealing. Subsequent regrowth of this amorphous layer leads to a great improvement in silicon layer crystallinity and channel carrier mobility, respectively by double crystal X\|ray diffraction and electrical measurements. Thin SPE SOS films would have application to the high\|performance CMOS circuitry.展开更多
The ferromagnetic manganese doped TiN films were grown by plasma assisted molecular beam epitaxy on MgO(001) substrates. The nitrogen concentration and the ratio of manganese at Ti lattice sites increase after the p...The ferromagnetic manganese doped TiN films were grown by plasma assisted molecular beam epitaxy on MgO(001) substrates. The nitrogen concentration and the ratio of manganese at Ti lattice sites increase after the plasma annealing post treatment. TIN(002) peak shifts toward low angle direction and TiN(111) peak disappears after the post treatment. The lattice expansion and peak shift are mainly ascribed to the reduction of nitrogen vacancies in films. The magnetism was suppressed in as-prepared sample due to the pinning effect of the nitrogen vacancies at defect sites or interface. The magnetism can be activated by the plasma implantation along with nitrogen vacancies reduce. The decrease of nitrogen vacancies leads to the enhancement of ferromagnetism.展开更多
There is a gr eat interest in obtaining epitaxial α″ nitride phase of iron because of their special ferromagnetic properties. α″ Fe 16 N 2 thin films have been prep ared by facing target sputtering (FTS) onto NaCl...There is a gr eat interest in obtaining epitaxial α″ nitride phase of iron because of their special ferromagnetic properties. α″ Fe 16 N 2 thin films have been prep ared by facing target sputtering (FTS) onto NaCl (001) substrates in a mixture of argon(Ar) and N 2 gases. The base pressure was 6×10 -5 Pa. During sput tering, the partial pressures of Ar and N 2 gases were kept constant at 0.3 Pa and 0.05 Pa respectively. The deposition rate was about 0.2 nm/s. The substrate temperature was held at about 100 ℃. Annealing of the films was sequentially ca rried out at 150 ℃ for 1 h in vacuum ( at least 10 -4 Pa ) to obtain α″ phase. Transmission electron microscope (TEM) observations and X ray diffract ion (XRD) patterns showed that the α″ Fe 16 N 2 epitaxially grew on the NaCl substrates. It was found that the arrangement of the SAD patterns exhibits perfect symmetries.By using super lattice reflections, the lattice constants a=b=(5.71±0.02)×10 -1 nm and c=(6.30±0.04) ×10 -1 nm of the α″ phase with a body centered tetragonal (BCT) structu re were determined, which was very close to the results obtained by Jack (a=b= 5.72×10 -1 nm, c= 6.29×10 -1 nm). The X ray diffraction patterns and the selected area diffraction patterns showed t hat α″ Fe 16 N 2 epitaxially grew on the NaCl (001) substrate with orien tation relationships α″ Fe 16 N 2 (001) ‖NaCl (001),α″ Fe 16 N 2 ‖NaCl .展开更多
This paper describes the design and fabrication of superconducting hot electron bolometer (HEB) mixer based on ultra-thin superconducting NbN films. The high quality films were epitaxially grown on high resistance Si ...This paper describes the design and fabrication of superconducting hot electron bolometer (HEB) mixer based on ultra-thin superconducting NbN films. The high quality films were epitaxially grown on high resistance Si substrates. The device was fabricated by magnetron sputtering, electron beam lithography (EBL), reactive ion etching (RIE), lithography, and so on. The device's resistance-tempera-ture (R-T) curves and current-voltage (I-V) curves were studied. The results of THz response of the device are presented. Y-factor technique was used to measure the device's noise temperature. When the device was irradiated with a laser radiation of 2.5 THz, the obtained lowest noise temperature of the device was 2213 K.展开更多
Ordered epitaxial ZrO2 films were grown on Pt(111) and characterized by low energy electron diffraction (LEED), synchrotron radiation photoemission spectroscopy (SRPES) and X-ray photoelectron spectroscopy (XPS). The ...Ordered epitaxial ZrO2 films were grown on Pt(111) and characterized by low energy electron diffraction (LEED), synchrotron radiation photoemission spectroscopy (SRPES) and X-ray photoelectron spectroscopy (XPS). The films were prepared by vapor deposition of zirconium in an O2 atmosphere followed by annealing under ultra high vacuum. At low coverages, the films grew as discontinuous two-dimentional islands with ordered structures. The size and structure of these islands were dependent on the coverage of ZrO2 films. At coverage <0.5 monolayer (ML), ( 19^(1/2) × 19^(1/2)) R23.4° and (5×5) structures coexisted on the surface. As the coverage increased, the (19^(1/2) × 19^(1/2) ) R23.4° structure developed with increasing degree of long-range order, while the (5×5) structure gradually faded. When the coverage reached >6 ML, a continuous ZrO2(111) film was formed with a (1×1) surface LEED pattern coexisting with a (2×2) pattern. These ordered thin ZrO2 films provide good model surfaces of bulk ZrO2 and can be used for further fundamental studies of the surface chemistry of ZrO2 using modern surface science techniques.展开更多
Field plate(FP)-terminated 4H-SiC trench gate MOSFETs are demonstrated in this work.N+/P?/N?/N+multiple epitaxial layers were grown on 3-inch N+type 4H-SiC substrate by chemical vapor deposition(CVD),and then the 4H-S...Field plate(FP)-terminated 4H-SiC trench gate MOSFETs are demonstrated in this work.N+/P?/N?/N+multiple epitaxial layers were grown on 3-inch N+type 4H-SiC substrate by chemical vapor deposition(CVD),and then the 4H-SiC trench gate MOSFETs were fabricated based on the standard trench transistor fabrication.Current-voltage measurements in forward and reverse bias have been performed on different devices with and without FP protections.It is found that more than 60%of the devices protected with FP termination are able to block 850 V.The measurements also show that the devices have the small leakage currents 0.15 nA at 600 V and 2.5 nA at 800 V,respectively.The experimental results also were compared with the simulated results,which show good agreement with each other in the trend.The limited performance of the devices is mainly because of the damage induced on the trench sidewalls from the etching process and the quality of the SiO2 films.Therefore,the 4H-SiC trench gate MOSFETs are expected to be optimized by reducing the etching damage and growing high-quality SiO2 dielectric films.展开更多
Orthorhombic HoMnO3(HMO) thin films were grown epitaxially on LaAlO3(001) substrates by using pulsed laser deposition technique. The films showed perfect orthorhombic crystallization and were well-aligned with the sub...Orthorhombic HoMnO3(HMO) thin films were grown epitaxially on LaAlO3(001) substrates by using pulsed laser deposition technique. The films showed perfect orthorhombic crystallization and were well-aligned with the substrates. The in-plane dielectric constant and loss of HMO films were measured as functions of temperature(80–300 K) and frequency(120 Hz–100 kHz) by using coplanar interdigital electrodes. Two thermally activated dielectric relaxations were found, and the respective peaks shifted to higher temperatures as the measuring frequency increased. The in-plane dielectric properties of epitaxial orthorhombic HMO films were considered as universal dielectric response behavior, and the dipolar effects and the hopping conductivity induced by the charge carriers were used to explain the results.展开更多
Herein we report the room-temperature epitaxial growth of V203 films by laser molecule beam epitaxy. X-ray diffraction pro- files show the room-temperature epitaxial V2O3 films orient in the [ 110] direction on α-Al2...Herein we report the room-temperature epitaxial growth of V203 films by laser molecule beam epitaxy. X-ray diffraction pro- files show the room-temperature epitaxial V2O3 films orient in the [ 110] direction on α-Al2O3 (0001) substrates. Atomic force microscopy measurements reveal that the ultra-smooth surfaces with root-mean-square surface roughness of 0.11 nm and 0.28 nm for 10-nm-thick and 35-nm-thick V2O3 film, respectively. X-ray photoelectron spectroscopy results indicate the V3+ oxida- tion state in the films. Typical metal-insulator transition is observed in films at about 135 K. The resistivities at 300 K are ap- proximately 0.8 mΩ cm and 0.5 mΩ cm for 10-rim-thick and 35-nm-thick V203 film, respectively.展开更多
文摘The increasing emphasis on the sub\|micron CMOS/SOS devices has placed a demand for high quality thin silicon on sapphire (SOS) films with thickness of the order 100-200nm. It is demonstrated that the crystalline quality of as\|grown thin SOS films by chemically vapor deposition method can be greatly improved by solid phase epitaxy (SPE) process: implantation of self\|silicon ions and subsequent thermal annealing. Subsequent regrowth of this amorphous layer leads to a great improvement in silicon layer crystallinity and channel carrier mobility, respectively by double crystal X\|ray diffraction and electrical measurements. Thin SPE SOS films would have application to the high\|performance CMOS circuitry.
基金This work is supported by nology Cooperation Plan of LKS[2013]15), the 2012 Doctor Normal University of China the Science and Tech- Guizhou Province (J- Foundation of Guizhou (Xun Zhou) Scholars of Ministry of Education of China, Ph.D. Programs Foundation of Ministry of Education of China (No.20120171120011), the Open Fund of the State Key Laboratory on Integrated Optoelectronics of Jilin University (No.IOKL2013KF14), the National Natural Science Foundation of China (No.61273310).
文摘The ferromagnetic manganese doped TiN films were grown by plasma assisted molecular beam epitaxy on MgO(001) substrates. The nitrogen concentration and the ratio of manganese at Ti lattice sites increase after the plasma annealing post treatment. TIN(002) peak shifts toward low angle direction and TiN(111) peak disappears after the post treatment. The lattice expansion and peak shift are mainly ascribed to the reduction of nitrogen vacancies in films. The magnetism was suppressed in as-prepared sample due to the pinning effect of the nitrogen vacancies at defect sites or interface. The magnetism can be activated by the plasma implantation along with nitrogen vacancies reduce. The decrease of nitrogen vacancies leads to the enhancement of ferromagnetism.
文摘There is a gr eat interest in obtaining epitaxial α″ nitride phase of iron because of their special ferromagnetic properties. α″ Fe 16 N 2 thin films have been prep ared by facing target sputtering (FTS) onto NaCl (001) substrates in a mixture of argon(Ar) and N 2 gases. The base pressure was 6×10 -5 Pa. During sput tering, the partial pressures of Ar and N 2 gases were kept constant at 0.3 Pa and 0.05 Pa respectively. The deposition rate was about 0.2 nm/s. The substrate temperature was held at about 100 ℃. Annealing of the films was sequentially ca rried out at 150 ℃ for 1 h in vacuum ( at least 10 -4 Pa ) to obtain α″ phase. Transmission electron microscope (TEM) observations and X ray diffract ion (XRD) patterns showed that the α″ Fe 16 N 2 epitaxially grew on the NaCl substrates. It was found that the arrangement of the SAD patterns exhibits perfect symmetries.By using super lattice reflections, the lattice constants a=b=(5.71±0.02)×10 -1 nm and c=(6.30±0.04) ×10 -1 nm of the α″ phase with a body centered tetragonal (BCT) structu re were determined, which was very close to the results obtained by Jack (a=b= 5.72×10 -1 nm, c= 6.29×10 -1 nm). The X ray diffraction patterns and the selected area diffraction patterns showed t hat α″ Fe 16 N 2 epitaxially grew on the NaCl (001) substrate with orien tation relationships α″ Fe 16 N 2 (001) ‖NaCl (001),α″ Fe 16 N 2 ‖NaCl .
基金Supported by the National Basic Research Program of China(Grant Nos.2006CB601006,2007CB310404)High-Tech Research and Development Pro-gram of China(Grant No.2006AA12Z120)
文摘This paper describes the design and fabrication of superconducting hot electron bolometer (HEB) mixer based on ultra-thin superconducting NbN films. The high quality films were epitaxially grown on high resistance Si substrates. The device was fabricated by magnetron sputtering, electron beam lithography (EBL), reactive ion etching (RIE), lithography, and so on. The device's resistance-tempera-ture (R-T) curves and current-voltage (I-V) curves were studied. The results of THz response of the device are presented. Y-factor technique was used to measure the device's noise temperature. When the device was irradiated with a laser radiation of 2.5 THz, the obtained lowest noise temperature of the device was 2213 K.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP, 200803580012)the National Natural Science Foundation of China (20873128)+2 种基金the Program for New Century Excellent Talents in University (NCET)the National Basic Research Program of China (2010CB923302)the Hundred Talents Program of the Chinese Academy of Sciences
文摘Ordered epitaxial ZrO2 films were grown on Pt(111) and characterized by low energy electron diffraction (LEED), synchrotron radiation photoemission spectroscopy (SRPES) and X-ray photoelectron spectroscopy (XPS). The films were prepared by vapor deposition of zirconium in an O2 atmosphere followed by annealing under ultra high vacuum. At low coverages, the films grew as discontinuous two-dimentional islands with ordered structures. The size and structure of these islands were dependent on the coverage of ZrO2 films. At coverage <0.5 monolayer (ML), ( 19^(1/2) × 19^(1/2)) R23.4° and (5×5) structures coexisted on the surface. As the coverage increased, the (19^(1/2) × 19^(1/2) ) R23.4° structure developed with increasing degree of long-range order, while the (5×5) structure gradually faded. When the coverage reached >6 ML, a continuous ZrO2(111) film was formed with a (1×1) surface LEED pattern coexisting with a (2×2) pattern. These ordered thin ZrO2 films provide good model surfaces of bulk ZrO2 and can be used for further fundamental studies of the surface chemistry of ZrO2 using modern surface science techniques.
基金supported by the National Natural Science Foundation of China(Grant Nos.61176070,61274079)the Natural Science Foundation of Shaanxi Province(Grant No.2013JQ8012)+1 种基金the Doctoral Fund of Ministry of Education of China(Grant Nos.20110203110010,201302031-0017)the Key Specific Projects of Ministry of Education of China(Grant No.625010101)
文摘Field plate(FP)-terminated 4H-SiC trench gate MOSFETs are demonstrated in this work.N+/P?/N?/N+multiple epitaxial layers were grown on 3-inch N+type 4H-SiC substrate by chemical vapor deposition(CVD),and then the 4H-SiC trench gate MOSFETs were fabricated based on the standard trench transistor fabrication.Current-voltage measurements in forward and reverse bias have been performed on different devices with and without FP protections.It is found that more than 60%of the devices protected with FP termination are able to block 850 V.The measurements also show that the devices have the small leakage currents 0.15 nA at 600 V and 2.5 nA at 800 V,respectively.The experimental results also were compared with the simulated results,which show good agreement with each other in the trend.The limited performance of the devices is mainly because of the damage induced on the trench sidewalls from the etching process and the quality of the SiO2 films.Therefore,the 4H-SiC trench gate MOSFETs are expected to be optimized by reducing the etching damage and growing high-quality SiO2 dielectric films.
基金supported by Shandong Province Natural Science Foundation of China(Grant No.ZR2011AM014)
文摘Orthorhombic HoMnO3(HMO) thin films were grown epitaxially on LaAlO3(001) substrates by using pulsed laser deposition technique. The films showed perfect orthorhombic crystallization and were well-aligned with the substrates. The in-plane dielectric constant and loss of HMO films were measured as functions of temperature(80–300 K) and frequency(120 Hz–100 kHz) by using coplanar interdigital electrodes. Two thermally activated dielectric relaxations were found, and the respective peaks shifted to higher temperatures as the measuring frequency increased. The in-plane dielectric properties of epitaxial orthorhombic HMO films were considered as universal dielectric response behavior, and the dipolar effects and the hopping conductivity induced by the charge carriers were used to explain the results.
基金supported by the National Basic Research Program of China(Grant Nos.2010CB630704 and 2012CB921403)
文摘Herein we report the room-temperature epitaxial growth of V203 films by laser molecule beam epitaxy. X-ray diffraction pro- files show the room-temperature epitaxial V2O3 films orient in the [ 110] direction on α-Al2O3 (0001) substrates. Atomic force microscopy measurements reveal that the ultra-smooth surfaces with root-mean-square surface roughness of 0.11 nm and 0.28 nm for 10-nm-thick and 35-nm-thick V2O3 film, respectively. X-ray photoelectron spectroscopy results indicate the V3+ oxida- tion state in the films. Typical metal-insulator transition is observed in films at about 135 K. The resistivities at 300 K are ap- proximately 0.8 mΩ cm and 0.5 mΩ cm for 10-rim-thick and 35-nm-thick V203 film, respectively.