Highly stained InGaAs/GaAs Quantum Wells (QW) are grown by using molecular beam epitaxy.The room-temperature photoluminescence (PL) peak wavelength as long as 1160nm is obtained from QW with the In composition of 38% ...Highly stained InGaAs/GaAs Quantum Wells (QW) are grown by using molecular beam epitaxy.The room-temperature photoluminescence (PL) peak wavelength as long as 1160nm is obtained from QW with the In composition of 38% and the well width of 6 8nm.The full-width at half-maximum of the PL peak is 22meV,indicating a good quality.InGaAs/GaAs QW ridge-waveguide lasers with emission wavelength of 1120nm are demonstrated.For 100-μm-wide ridge-waveguide lasers with a cavity length of 800μm,the kink-free output power up to 200mW is achieved with the slope efficiency of 0 84mW/mA under the continue-wave operation.For 10μm-wide ridge-waveguide lasers,the lowest threshold current density of 450A/cm2 and the characteristic temperature of 90K are obtained.展开更多
Material growth and device fabrication of the first 1.3μm quantum well (QW) edge emitting laser diodes in China are reported. Through the optimization of the molecular beam epitaxy (MBE) growth conditions and the...Material growth and device fabrication of the first 1.3μm quantum well (QW) edge emitting laser diodes in China are reported. Through the optimization of the molecular beam epitaxy (MBE) growth conditions and the tuning of the indium and nitrogen composition of the GalnNAs QWs, the emission wavelengths of the QWs can be tuned to 1.3μm. Ridge geometry waveguide laser diodes are fabricated. The lasing wavelength is 1.3μm under continuous current injection at room temperature with threshold current of 1kA/cm^2 for the laser diode structures with the cleaved facet mirrors. The output light power over 30mW is obtained.展开更多
A new process method is proposed to improve the light output power of GaAs vertical cavity surface-emitting lasers (VCSELs). The VCSELs with open-annulus-distributed holes have a light output power 1.34 times higher...A new process method is proposed to improve the light output power of GaAs vertical cavity surface-emitting lasers (VCSELs). The VCSELs with open-annulus-distributed holes have a light output power 1.34 times higher than those with ring trenches. The 14μm-aperture devices have a light output power higher than 10mW and have a maximum of 12.48mW at 29.6mA. In addition,open-annulus-distributed holes offer bridges for current injection,so the connecting Ti-Au metal between the ohmic contact and bonding pad does not have to cross the ring trench, and it therefore would not cause the connecting metal to be broken. These VCSELs also show high-temperature operation capabilities,and they have a maximum output power of 8mW even at an operation temperature of up to 60℃.展开更多
The refractive indices of disordered (Al xGa 1-x ) 0 51 In 0 49 P,which is grown by low-pressure organometallic vapor phase epitaxy and lattice-matched to GaAs substrate,have been determined by measurin...The refractive indices of disordered (Al xGa 1-x ) 0 51 In 0 49 P,which is grown by low-pressure organometallic vapor phase epitaxy and lattice-matched to GaAs substrate,have been determined by measuring their reflectance spectra when the wavelength ranges between 0 5 to 2 5 micrometer.A single-oscillator dispersion model is used to verify the experiment data and calculate the reflectance spectrum.The refractive indices are used to analyze the waveguide of strain quantum well GaInP/AlGaInP visible laser diode.The simulated far field pattern is consistent with the experimental results very well.展开更多
The heterostructure of InAs/In0.52Al0.48As/InP is unique in that InAs wires instead of dots self-assemble in molecular beam epitaxy. These InAs wires have some distinctive features in their growth and structure. This ...The heterostructure of InAs/In0.52Al0.48As/InP is unique in that InAs wires instead of dots self-assemble in molecular beam epitaxy. These InAs wires have some distinctive features in their growth and structure. This paper summarizes the investigations of the growth and structural properties of InAs wires that have been performed in our laboratory recently.展开更多
InGaAsP/InP multiple quantum wells with quantum well intermixing have been prepared by impurity-free vacancy disordering.The luminescent characteristics were investigated using photoluminescence and photoreflectance,f...InGaAsP/InP multiple quantum wells with quantum well intermixing have been prepared by impurity-free vacancy disordering.The luminescent characteristics were investigated using photoluminescence and photoreflectance,from which the band gap blue shift was observed.Si3N4,SiO2 and SOG were used for the dielectric layer to enhance intermixing from the outdiffusion of group III atoms.All samples were annealed by rapid thermal annealing.The results indicate that the band gap blue shift varies with the dielectric layers and the annealing temperature.The SiO2 capping with an InGaAs cladding layer was successfully used to induce larger band tuning effect in the InGaAsP/InP MQWs than the Si3N4 capping with an InGaAs cladding layer.On the other hand, samples with the Si3N4-InP cap layer combination also show larger energy shifts than that with SiO2-InP cap layer combination.展开更多
For Hall measurement under different magnetic fields at LN2 temperature,Hg1-xCdxTe (MCT) film (radius 1 cm) grown on CdTe substrate by LPE is photoengraved into many small Van Der Pauw squares,then their Hall coef...For Hall measurement under different magnetic fields at LN2 temperature,Hg1-xCdxTe (MCT) film (radius 1 cm) grown on CdTe substrate by LPE is photoengraved into many small Van Der Pauw squares,then their Hall coefficients and mobilities are measured and analyzed,respectively.Two films were Hall-tested during the temperature range from LHe 4.2 K to about 200 K.An actual impression on the uniformity of electrical parameters for MCT film can obtained by means of the methods presented in this paper.展开更多
The subband structures, distributions of electron and hole wave functions, state density, optical gain spectra, and transparency carrier density of the V-groove Zn 1-x Cd x Se/ZnSe quantum wires are investigated theor...The subband structures, distributions of electron and hole wave functions, state density, optical gain spectra, and transparency carrier density of the V-groove Zn 1-x Cd x Se/ZnSe quantum wires are investigated theoretically using four band effective-mass Hamiltonian, which takes into account the effects of the valence band anisotropy and the band mixing. The biaxial strain effect for quantum wires is included in the calculation. The compressive strain in the Zn 1-x Cd x Se wire region increases the energy separation between the uppermost subbands. The optical gain with xy -polarized light is enhanced, while optical gain with z -polarized light is strongly decreased. The xy -polarized optical gain spectrum has a peak at around 2.541 eV, with the transparency carrier density of 0.75×10 18 cm -3 . The calculated results also show that the strain tends to increase the quantum confinement and enhance the anisotropy of the optical transitions.展开更多
How to control the dipole orientation of organic emitters is a challenge in the field of organic light-emitting diodes(OLEDs).Herein,a linear thermally activated delayed fluorescence(TADF)molecule,PhNAI-PMSBA,bearing ...How to control the dipole orientation of organic emitters is a challenge in the field of organic light-emitting diodes(OLEDs).Herein,a linear thermally activated delayed fluorescence(TADF)molecule,PhNAI-PMSBA,bearing a 1,8-naphthalimide-acridine framework was designed by a doublesite long-axis extension strategy to actively control the dipole orientation.The horizontal ratio of emitting dipole orientation of PhNAI-PMSBA reaches 95%,substantially higher than that of isotropic emitters(67%).This unique feature is associated with the intrinsically horizontal molecular orientation of PhNAI-PMSBA and the good agreement between its transition dipole moment direction and molecular long axis.The PhNAI-PMSBA-based OLED achieves an ultrahigh optical outcoupling efficiency of 43.2%and thus affords one of the highest red electroluminescence with an external quantum efficiency of 22.3%and the Commission International de l’Eclairage 1931 coordinates at around(0.60,0.40).展开更多
Thermally activated delayed fluorescence(TADF) sensitized fluorescent organic light-emitting diodes(TSF-OLEDs) have shown great potential for the realization of high efficiency with low efficiency rolloff and good col...Thermally activated delayed fluorescence(TADF) sensitized fluorescent organic light-emitting diodes(TSF-OLEDs) have shown great potential for the realization of high efficiency with low efficiency rolloff and good color purity. However, the superior examples of TSF-OLEDs are still limited up to now.Herein, a trade-off strategy is presented for designing efficient TADF materials and achieving highperformance TSF-OLEDs via the construction of a new type of triazolotriazine(TAZTRZ) acceptor. The enhanced electron-withdrawing ability of TAZTRZ acceptor, fused by triazine(TRZ) and triazole(TAZ)together, enables TADF luminogens with small singlet-triplet energy gap(ΔE_(ST)) values. Meanwhile, the increased planarity from the TRZ-phenyl linkage(6:6 system) to the TAZ-phenyl linkage(5:6 system)can compensate the decrease of oscillator strength(f) while lowing ΔE_(ST), thus achieving a trade-off between small ΔE_(ST) and high f. As a result, the related TSF-OLED achieved an extremely low turn-on voltage of 2.1 V, an outstanding maximum external quantum efficiency(EQEmax) of 23.7% with small efficiency roll-off(EQE1000 of 23.2%;EQE5000 of 20.6%) and an impressively high maximum power efficiency of 82.1 lm W^(-1), which represents the state-of-the-art performance for yellow TSF-OLEDs.展开更多
文摘Highly stained InGaAs/GaAs Quantum Wells (QW) are grown by using molecular beam epitaxy.The room-temperature photoluminescence (PL) peak wavelength as long as 1160nm is obtained from QW with the In composition of 38% and the well width of 6 8nm.The full-width at half-maximum of the PL peak is 22meV,indicating a good quality.InGaAs/GaAs QW ridge-waveguide lasers with emission wavelength of 1120nm are demonstrated.For 100-μm-wide ridge-waveguide lasers with a cavity length of 800μm,the kink-free output power up to 200mW is achieved with the slope efficiency of 0 84mW/mA under the continue-wave operation.For 10μm-wide ridge-waveguide lasers,the lowest threshold current density of 450A/cm2 and the characteristic temperature of 90K are obtained.
文摘Material growth and device fabrication of the first 1.3μm quantum well (QW) edge emitting laser diodes in China are reported. Through the optimization of the molecular beam epitaxy (MBE) growth conditions and the tuning of the indium and nitrogen composition of the GalnNAs QWs, the emission wavelengths of the QWs can be tuned to 1.3μm. Ridge geometry waveguide laser diodes are fabricated. The lasing wavelength is 1.3μm under continuous current injection at room temperature with threshold current of 1kA/cm^2 for the laser diode structures with the cleaved facet mirrors. The output light power over 30mW is obtained.
文摘A new process method is proposed to improve the light output power of GaAs vertical cavity surface-emitting lasers (VCSELs). The VCSELs with open-annulus-distributed holes have a light output power 1.34 times higher than those with ring trenches. The 14μm-aperture devices have a light output power higher than 10mW and have a maximum of 12.48mW at 29.6mA. In addition,open-annulus-distributed holes offer bridges for current injection,so the connecting Ti-Au metal between the ohmic contact and bonding pad does not have to cross the ring trench, and it therefore would not cause the connecting metal to be broken. These VCSELs also show high-temperature operation capabilities,and they have a maximum output power of 8mW even at an operation temperature of up to 60℃.
文摘The refractive indices of disordered (Al xGa 1-x ) 0 51 In 0 49 P,which is grown by low-pressure organometallic vapor phase epitaxy and lattice-matched to GaAs substrate,have been determined by measuring their reflectance spectra when the wavelength ranges between 0 5 to 2 5 micrometer.A single-oscillator dispersion model is used to verify the experiment data and calculate the reflectance spectrum.The refractive indices are used to analyze the waveguide of strain quantum well GaInP/AlGaInP visible laser diode.The simulated far field pattern is consistent with the experimental results very well.
文摘The heterostructure of InAs/In0.52Al0.48As/InP is unique in that InAs wires instead of dots self-assemble in molecular beam epitaxy. These InAs wires have some distinctive features in their growth and structure. This paper summarizes the investigations of the growth and structural properties of InAs wires that have been performed in our laboratory recently.
文摘InGaAsP/InP multiple quantum wells with quantum well intermixing have been prepared by impurity-free vacancy disordering.The luminescent characteristics were investigated using photoluminescence and photoreflectance,from which the band gap blue shift was observed.Si3N4,SiO2 and SOG were used for the dielectric layer to enhance intermixing from the outdiffusion of group III atoms.All samples were annealed by rapid thermal annealing.The results indicate that the band gap blue shift varies with the dielectric layers and the annealing temperature.The SiO2 capping with an InGaAs cladding layer was successfully used to induce larger band tuning effect in the InGaAsP/InP MQWs than the Si3N4 capping with an InGaAs cladding layer.On the other hand, samples with the Si3N4-InP cap layer combination also show larger energy shifts than that with SiO2-InP cap layer combination.
文摘For Hall measurement under different magnetic fields at LN2 temperature,Hg1-xCdxTe (MCT) film (radius 1 cm) grown on CdTe substrate by LPE is photoengraved into many small Van Der Pauw squares,then their Hall coefficients and mobilities are measured and analyzed,respectively.Two films were Hall-tested during the temperature range from LHe 4.2 K to about 200 K.An actual impression on the uniformity of electrical parameters for MCT film can obtained by means of the methods presented in this paper.
文摘The subband structures, distributions of electron and hole wave functions, state density, optical gain spectra, and transparency carrier density of the V-groove Zn 1-x Cd x Se/ZnSe quantum wires are investigated theoretically using four band effective-mass Hamiltonian, which takes into account the effects of the valence band anisotropy and the band mixing. The biaxial strain effect for quantum wires is included in the calculation. The compressive strain in the Zn 1-x Cd x Se wire region increases the energy separation between the uppermost subbands. The optical gain with xy -polarized light is enhanced, while optical gain with z -polarized light is strongly decreased. The xy -polarized optical gain spectrum has a peak at around 2.541 eV, with the transparency carrier density of 0.75×10 18 cm -3 . The calculated results also show that the strain tends to increase the quantum confinement and enhance the anisotropy of the optical transitions.
基金the National Natural Science Foundation of China(51873158,51573141,91833304 and 91433201)the National Key R&D Program of China(2016YFB0401002)+4 种基金Shenzhen Science and Technolgy Program(KQTD20170330110107046 and JCYJ20190808151209557)the Key Technological Innovation Program of Hubei Province(2018AAA013)the Natural Science Foundation for Distinguished Young Scholars of Hubei Province(2017CFA033)the support from the Ministry of Science and Technology of Taiwan(MOST 107-2221-E-002-160-MY3 and 108-2221-E-002-148-MY3)the post-doctoral fellowship from the Ministry of Education(MOE)of Taiwan。
文摘How to control the dipole orientation of organic emitters is a challenge in the field of organic light-emitting diodes(OLEDs).Herein,a linear thermally activated delayed fluorescence(TADF)molecule,PhNAI-PMSBA,bearing a 1,8-naphthalimide-acridine framework was designed by a doublesite long-axis extension strategy to actively control the dipole orientation.The horizontal ratio of emitting dipole orientation of PhNAI-PMSBA reaches 95%,substantially higher than that of isotropic emitters(67%).This unique feature is associated with the intrinsically horizontal molecular orientation of PhNAI-PMSBA and the good agreement between its transition dipole moment direction and molecular long axis.The PhNAI-PMSBA-based OLED achieves an ultrahigh optical outcoupling efficiency of 43.2%and thus affords one of the highest red electroluminescence with an external quantum efficiency of 22.3%and the Commission International de l’Eclairage 1931 coordinates at around(0.60,0.40).
基金This work was supported by the National Natural Science Foundation of China(21432005)the Fundamental Research Funds for the Central Universities and the Comprehensive Training Platform Specialized Laboratory,College of Chemistry,Sichuan University。
文摘Thermally activated delayed fluorescence(TADF) sensitized fluorescent organic light-emitting diodes(TSF-OLEDs) have shown great potential for the realization of high efficiency with low efficiency rolloff and good color purity. However, the superior examples of TSF-OLEDs are still limited up to now.Herein, a trade-off strategy is presented for designing efficient TADF materials and achieving highperformance TSF-OLEDs via the construction of a new type of triazolotriazine(TAZTRZ) acceptor. The enhanced electron-withdrawing ability of TAZTRZ acceptor, fused by triazine(TRZ) and triazole(TAZ)together, enables TADF luminogens with small singlet-triplet energy gap(ΔE_(ST)) values. Meanwhile, the increased planarity from the TRZ-phenyl linkage(6:6 system) to the TAZ-phenyl linkage(5:6 system)can compensate the decrease of oscillator strength(f) while lowing ΔE_(ST), thus achieving a trade-off between small ΔE_(ST) and high f. As a result, the related TSF-OLED achieved an extremely low turn-on voltage of 2.1 V, an outstanding maximum external quantum efficiency(EQEmax) of 23.7% with small efficiency roll-off(EQE1000 of 23.2%;EQE5000 of 20.6%) and an impressively high maximum power efficiency of 82.1 lm W^(-1), which represents the state-of-the-art performance for yellow TSF-OLEDs.