We design and fabricate a 128 × 128 AlGaAs/GaAs quantum well infrared photodetector focal plane array (FPA). The device is achieved by metal organic chemical vapor deposition and GaAs integrated circuit process...We design and fabricate a 128 × 128 AlGaAs/GaAs quantum well infrared photodetector focal plane array (FPA). The device is achieved by metal organic chemical vapor deposition and GaAs integrated circuit processing technology. A test structure of the photodetector with a mesa size of 300μm × 300μm is also made in order to obtain the device parameters. The measured dark current density at 77K is 1.5 × 10^-3A/cm^2 with a bias voltage of 2V. The peak of the responsivity spectrum is at 8.4μm,with a cutoff wavelength of 9μm. The blackbody detectivity is shown to be 3.95 × 10^8 (cm · Hz^1/2)/W. The final FPA is flip-chip bonded on a CMOS read-out integrated circuit. The infrared thermal images of some targets at room temperature background are successfully demonstrated at 80K operating temperature with a ratio of dead pixels of less than 1%.展开更多
A novel lateral Si 0 7 Ge 0.3 /Si p i n photodetector which is suitable for high speed operation with low voltage and at 0 7~1 1μm wavelengths is demonstrated.The fabrication of the device is carried ...A novel lateral Si 0 7 Ge 0.3 /Si p i n photodetector which is suitable for high speed operation with low voltage and at 0 7~1 1μm wavelengths is demonstrated.The fabrication of the device is carried out on a SOI substrate by using a UHV/CVD SiGe/Si heteroepitaxy technology and a CMOS/SOI process.Biased at 3 0V,the photodetector attained a responsivity of 0 38A/W at its peak response wavelength 0 93μm and exhibited extremely low dark current of less than 1nA,small parasitic capacitance of less than 1 0pF,and short rise time of 2 5ns.The distinct characteristics and process compatibility make it applicable to integrate the photodetector with other silicon based devices to meet the needs of high speed near infrared signal detections.展开更多
A microelectrode array(MEA) is presented, which is composed of 60 independent electrodes with 59 working ones and one reference one, and they are divided into 30 pairs. Except for the reference electrode, each pair ...A microelectrode array(MEA) is presented, which is composed of 60 independent electrodes with 59 working ones and one reference one, and they are divided into 30 pairs. Except for the reference electrode, each pair consists of one stimulating electrode and one recording electrode. Supported by the peripheral circuits, four electrode states to study the bioelectrical signal of biological tissue or slice cultured in-vitro on the surface of the electrodes can be realized through each pair of electrodes. The four electrode states are stimulation, recording, stimulation and recording simultaneously, and isolation. The state of each pair of working electrodes can be arbitrarily controlled according to actual needs. The MEAs are fabricated in printed circuit board (PCB) technology. The total area of the PCB-based MEA is 49 mm × 49 mm. The impedance measurement of MEA is carried out in 0.9% sodium chloride solution at room temperature by means of 2-point measurements with an Agilent LCR meter, and the test signal for the impedance measurement is sinusoidal (AC voltage 50 mV, sweeping frequency 20 Hz to 10 kHz). The electrode impedance is between 200 and 3 kΩ while the frequency is between 500 and 1 000 Hz. The electrode impedance magnitude is inversely proportional to the frequency. Experiments of toad sciatic nerve in-vitro stimulation and recording and signal regeneration between isolated toad sciatic nerves are carried out on the PCB-based MEA. The results show that the MEA can be used for bioelectrical signal stimulation, recording, stimulation and recording simultaneously, and isolation of biological tissues or slices in-vitro.展开更多
Ultraviolet (UV) photodetector constructed by ZnO material has attracted intense research and commercial interest. However, its photoresistivity and photoresonse are still unsatisfied. Herein, we report a novel meth...Ultraviolet (UV) photodetector constructed by ZnO material has attracted intense research and commercial interest. However, its photoresistivity and photoresonse are still unsatisfied. Herein, we report a novel method to assemble ZnO nanoparticles (NPs) onto the reduced graphite oxide (RGO) sheet by simple hydrothermal process without any surfactant. It is found that the high-quality crystallized ZnO NPs with the average diameter of 5 nm are well dispersed on the RGO surface, and the density of ZnO NPs can be readily controlled by the concentration of the precursor. The photodetector fabricated with this ZnO NPs- RGO hybrid structure demonstrates an excellent photoresponse for the UV irradiation. The results make this hybrid especially suitable as a novel material for the design and fabrication of high performance UV photodector.展开更多
The cloud-detection procedure developed by McNally and Watts(MW03) was added to the Weather Research and Forecasting Data Assimilation System. To provide some guidelines for setting up cloud-detection schemes, this st...The cloud-detection procedure developed by McNally and Watts(MW03) was added to the Weather Research and Forecasting Data Assimilation System. To provide some guidelines for setting up cloud-detection schemes, this study compares the MW03 scheme to the Multivariate and Minimum Residual(MMR) scheme for both simulated and real Advanced Infrared Sounder(AIRS) radiances. Results show that there is a high level of consistency between the results from simulated and real AIRS data. As expected, both cloud-detection schemes perform well in finding the cloud-contaminated channels based on the channels' peak levels. The clouddetection results from MW03 are sensitive to the prescribed brightness temperature innovation threshold and brightness temperature gradient threshold. When increasing the brightness temperature innovation threshold for MW03 to roughly eight times the default threshold, the two cloud-detection schemes produce consistent data rejection distributions overall for high channels. MMR generally retains more data for long-wave channels. For both cloud-detection schemes, there is a high level of consistency between the cloud-free pixels and the visible/near-IR(Vis/NIR) cloud mask.展开更多
In the infrared spectrum absorbed type gas concentration sensor,voltage signal obtained from the two-channel thermopile infrared detector TPS2534 is very weak.In order to solve this problem,the authors have establishe...In the infrared spectrum absorbed type gas concentration sensor,voltage signal obtained from the two-channel thermopile infrared detector TPS2534 is very weak.In order to solve this problem,the authors have established the structure of the sensor and designed weak signal detecting circuit of the sensor based on infrared spectrum absorption principle,differential de-noising principle and weak signal detecting principle.The authors have made experiments using CH4 gas.The results show that the circuit can remove noise effectively and detect weak electrical signal obtained from the detector.展开更多
Watermelon is a popular fruit in the world with soluble solids content (SSC) being one of the major characteristics used for assessing its quality. This study was aimed at obtaining a method for nondestructive SSC d...Watermelon is a popular fruit in the world with soluble solids content (SSC) being one of the major characteristics used for assessing its quality. This study was aimed at obtaining a method for nondestructive SSC detection of watermelons by means of visible/near infrared (Vis/NIR) diffuse transmittance technique. Vis/NIR transmittance spectra of intact watermelons were acquired using a low-cost commercially available spectrometer operating over the range 350-1000 nm. Spectra data were analyzed by two multivariate calibration techniques: partial least squares (PLS) and principal component regression (PCR) methods. Two experiments were designed for two varieties of watermelons [Qilin (QL), Zaochunhongyu (ZC)], which have different skin thickness range and shape dimensions. The influences of different data preprocessing and spectra treatments were also investigated. Performance of different models was assessed in terms of root mean square errors of calibration (RMSEC), root mean square errors of prediction (RMSEP) and correlation coefficient (r) between the predicted and measured parameter values. Results showed that spectra data preprocessing influenced the performance of the calibration models. The first derivative spectra showed the best results with high correlation coefficient of determination [r=0.918 (QL); r=0.954 (ZC)], low RMSEP [0.65 °Brix (QL); 0.58 °Brix (ZC)], low RMSEC [0.48 °Brix (QL); 0.34°Brix (ZC)] and small difference between the'RMSEP and the RMSEC by PLS method. The nondestructive Vis/NIR measurements provided good estimates of SSC index of watermelon, and the predicted values were highly correlated with destructively measured values for SSC. The models based on smoothing spectra (Savitzky-Golay filter smoothing method) did not enhance the performance of calibration models obviously. The results indicated the feasibility of Vis/NIR diffuse transmittance spectral analysis for predicting watermelon SSC in a nondestructive way.展开更多
In this study,we have developed a high-sensitivity,near-infrared photodetector based on PdSe2/GaAs heterojunction,which was made by transferring a multilayered PdSe2 film onto a planar GaAs.The as-fabricated PdSe2/GaA...In this study,we have developed a high-sensitivity,near-infrared photodetector based on PdSe2/GaAs heterojunction,which was made by transferring a multilayered PdSe2 film onto a planar GaAs.The as-fabricated PdSe2/GaAs heterojunction device exhibited obvious photovoltaic behavior to 808 nm illumination,indicating that the near-infrared photodetector can be used as a self-driven device without external power supply.Further device analysis showed that the hybrid heterojunction exhibited a high on/off ratio of 1.16×10^5 measured at 808 nm under zero bias voltage.The responsivity and specific detectivity of photodetector were estimated to be 171.34 mA/W and 2.36×10^11 Jones,respectively.Moreover,the device showed excellent stability and reliable repeatability.After 2 months,the photoelectric characteristics of the near-infrared photodetector hardly degrade in air,attributable to the good stability of the PdSe2.Finally,the PdSe2/GaAs-based heterojunction device can also function as a near-infrared light sensor.展开更多
An intelligent line-tracking chess robot based on STM32 is introduced in this paper. Its hardware consists of photo- electric detection circuit, main control circuit, motor driven circuit, steering engine driven circu...An intelligent line-tracking chess robot based on STM32 is introduced in this paper. Its hardware consists of photo- electric detection circuit, main control circuit, motor driven circuit, steering engine driven circuit and dial switch. The hardware structure and software flow chart of the system are described in details in this paper. The robot is driven by rear wheel motors, and the real-time position of the robot is determined by the ground information collected by infrared sensors. The heading direction of robot is adjusted by steering engine installed in front wheel, and the open angle of manipulator is controlled by the other steering engine which can ensure the robot moving chessmen accurately and quickly during the moving process. The test shows that the kind of intelligent chess robot can complete the task in a fast and accurate way.展开更多
An optical readout uncooled infrared (IR) imaging detector of bimaterial cantilever array using knife-edge filter operation (KEFO) is demonstrated. The angle change of each cantilever in a focal plane array (FPA...An optical readout uncooled infrared (IR) imaging detector of bimaterial cantilever array using knife-edge filter operation (KEFO) is demonstrated. The angle change of each cantilever in a focal plane array (FPA) can be simultaneously detected with a resolution of 10.5 degree. A deformation magnifying substrate-free micro-cantilever unit with multi-fold interval metaUized legs is specially designed and modeled. A FPA with 160×160 pixels is fabricated and thermal images with noise equivalent temperature difference (NETD) of 400 mK are obtained by this imaging detector.展开更多
Tryptophan derivatives have long been used as site-specific biological probes. 4-Cyanotrypto- phan emits in the visible region and is the smallest blue fluorescent amino acid probe for bio- logical applications. Other...Tryptophan derivatives have long been used as site-specific biological probes. 4-Cyanotrypto- phan emits in the visible region and is the smallest blue fluorescent amino acid probe for bio- logical applications. Other indole or tryptophan analogs may emit at even longer wavelengths than 4-cyanotryptophan. We performed FTIR, UV-Vis, and steady-state and time-resolved fluorescence spectroscopy on six ester-derivatized indoles in different solvents. Methyl indole- 4-carboxylate emits at 450 nrn with a long fluorescence lifetirne, and is a promising candidate for a fluorescent probe. The ester-derivatized indoles could be used as spectroscopic probes to study local protein environments. Our measurements provide a guide for choosing esterderivatized indoles to use in practice and data for computational modeling of the effect of substitution on the electronic transitions of indole.展开更多
A novel kind of multi-quantum well infrared photodetector(QWlP) is presented. In the new structure device,a p-type contact layer has been grown on the top of the conventional structure of QWlP,then a small tunneling...A novel kind of multi-quantum well infrared photodetector(QWlP) is presented. In the new structure device,a p-type contact layer has been grown on the top of the conventional structure of QWlP,then a small tunneling current is instead of the large compensatory current,which made the device low dark current and low noise characteristics. The measured result of dark current is consistent with the calculated result, and the noise of the new structure QWIP is decreased to one third of the conventional QWlP.展开更多
Signals from infrared detector are very weak in SO2 concentration measuring system.In order to improve the sensitivity of detection,combining with filter correlation technology and infrared absorption principle,the we...Signals from infrared detector are very weak in SO2 concentration measuring system.In order to improve the sensitivity of detection,combining with filter correlation technology and infrared absorption principle,the weak signal processing circuit is designed according to correlation detection technology.Under laboratory conditions,system performance of SO2 concentration is tested,and the experimental data are analyzed and processed.Then relationship of SO2 concentration and the measuring voltage is provided to prove that the design improves measuring sensitivity of the system.展开更多
文摘We design and fabricate a 128 × 128 AlGaAs/GaAs quantum well infrared photodetector focal plane array (FPA). The device is achieved by metal organic chemical vapor deposition and GaAs integrated circuit processing technology. A test structure of the photodetector with a mesa size of 300μm × 300μm is also made in order to obtain the device parameters. The measured dark current density at 77K is 1.5 × 10^-3A/cm^2 with a bias voltage of 2V. The peak of the responsivity spectrum is at 8.4μm,with a cutoff wavelength of 9μm. The blackbody detectivity is shown to be 3.95 × 10^8 (cm · Hz^1/2)/W. The final FPA is flip-chip bonded on a CMOS read-out integrated circuit. The infrared thermal images of some targets at room temperature background are successfully demonstrated at 80K operating temperature with a ratio of dead pixels of less than 1%.
文摘A novel lateral Si 0 7 Ge 0.3 /Si p i n photodetector which is suitable for high speed operation with low voltage and at 0 7~1 1μm wavelengths is demonstrated.The fabrication of the device is carried out on a SOI substrate by using a UHV/CVD SiGe/Si heteroepitaxy technology and a CMOS/SOI process.Biased at 3 0V,the photodetector attained a responsivity of 0 38A/W at its peak response wavelength 0 93μm and exhibited extremely low dark current of less than 1nA,small parasitic capacitance of less than 1 0pF,and short rise time of 2 5ns.The distinct characteristics and process compatibility make it applicable to integrate the photodetector with other silicon based devices to meet the needs of high speed near infrared signal detections.
基金The National Natural Science Foundation of China(No. 61076118, 90307013, 90707005)the Natural Science Foundation of Jiangsu Province (No. BK2008032)Special Foundation and Open Foundation of the State Key Laboratory of Bioelectronics of Southeast University
文摘A microelectrode array(MEA) is presented, which is composed of 60 independent electrodes with 59 working ones and one reference one, and they are divided into 30 pairs. Except for the reference electrode, each pair consists of one stimulating electrode and one recording electrode. Supported by the peripheral circuits, four electrode states to study the bioelectrical signal of biological tissue or slice cultured in-vitro on the surface of the electrodes can be realized through each pair of electrodes. The four electrode states are stimulation, recording, stimulation and recording simultaneously, and isolation. The state of each pair of working electrodes can be arbitrarily controlled according to actual needs. The MEAs are fabricated in printed circuit board (PCB) technology. The total area of the PCB-based MEA is 49 mm × 49 mm. The impedance measurement of MEA is carried out in 0.9% sodium chloride solution at room temperature by means of 2-point measurements with an Agilent LCR meter, and the test signal for the impedance measurement is sinusoidal (AC voltage 50 mV, sweeping frequency 20 Hz to 10 kHz). The electrode impedance is between 200 and 3 kΩ while the frequency is between 500 and 1 000 Hz. The electrode impedance magnitude is inversely proportional to the frequency. Experiments of toad sciatic nerve in-vitro stimulation and recording and signal regeneration between isolated toad sciatic nerves are carried out on the PCB-based MEA. The results show that the MEA can be used for bioelectrical signal stimulation, recording, stimulation and recording simultaneously, and isolation of biological tissues or slices in-vitro.
基金This work is supported by MOST of China (No.2011CB921403), the Chinese Academy of Science, and the National Natural Science Foundation of China (No.10874165, No.90921013, No.11074231, and No. 11004179).
文摘Ultraviolet (UV) photodetector constructed by ZnO material has attracted intense research and commercial interest. However, its photoresistivity and photoresonse are still unsatisfied. Herein, we report a novel method to assemble ZnO nanoparticles (NPs) onto the reduced graphite oxide (RGO) sheet by simple hydrothermal process without any surfactant. It is found that the high-quality crystallized ZnO NPs with the average diameter of 5 nm are well dispersed on the RGO surface, and the density of ZnO NPs can be readily controlled by the concentration of the precursor. The photodetector fabricated with this ZnO NPs- RGO hybrid structure demonstrates an excellent photoresponse for the UV irradiation. The results make this hybrid especially suitable as a novel material for the design and fabrication of high performance UV photodector.
基金sponsored by the National Basic Research Program of China (973 Program, 2013CB430102)the Program of Scientific Innovation Research of College Graduate in Jiangsu Province (Grant Nos. CXZZ12-0490 and CXZZ11-0606)The National Center for Atmospheric Research is sponsored by the National Science Foundation
文摘The cloud-detection procedure developed by McNally and Watts(MW03) was added to the Weather Research and Forecasting Data Assimilation System. To provide some guidelines for setting up cloud-detection schemes, this study compares the MW03 scheme to the Multivariate and Minimum Residual(MMR) scheme for both simulated and real Advanced Infrared Sounder(AIRS) radiances. Results show that there is a high level of consistency between the results from simulated and real AIRS data. As expected, both cloud-detection schemes perform well in finding the cloud-contaminated channels based on the channels' peak levels. The clouddetection results from MW03 are sensitive to the prescribed brightness temperature innovation threshold and brightness temperature gradient threshold. When increasing the brightness temperature innovation threshold for MW03 to roughly eight times the default threshold, the two cloud-detection schemes produce consistent data rejection distributions overall for high channels. MMR generally retains more data for long-wave channels. For both cloud-detection schemes, there is a high level of consistency between the cloud-free pixels and the visible/near-IR(Vis/NIR) cloud mask.
文摘In the infrared spectrum absorbed type gas concentration sensor,voltage signal obtained from the two-channel thermopile infrared detector TPS2534 is very weak.In order to solve this problem,the authors have established the structure of the sensor and designed weak signal detecting circuit of the sensor based on infrared spectrum absorption principle,differential de-noising principle and weak signal detecting principle.The authors have made experiments using CH4 gas.The results show that the circuit can remove noise effectively and detect weak electrical signal obtained from the detector.
基金Project supported by the National Natural Science Foundation of China (No. 30370371) and Program for New Century Excellent Talents in University (No. NCET-04-0524), China
文摘Watermelon is a popular fruit in the world with soluble solids content (SSC) being one of the major characteristics used for assessing its quality. This study was aimed at obtaining a method for nondestructive SSC detection of watermelons by means of visible/near infrared (Vis/NIR) diffuse transmittance technique. Vis/NIR transmittance spectra of intact watermelons were acquired using a low-cost commercially available spectrometer operating over the range 350-1000 nm. Spectra data were analyzed by two multivariate calibration techniques: partial least squares (PLS) and principal component regression (PCR) methods. Two experiments were designed for two varieties of watermelons [Qilin (QL), Zaochunhongyu (ZC)], which have different skin thickness range and shape dimensions. The influences of different data preprocessing and spectra treatments were also investigated. Performance of different models was assessed in terms of root mean square errors of calibration (RMSEC), root mean square errors of prediction (RMSEP) and correlation coefficient (r) between the predicted and measured parameter values. Results showed that spectra data preprocessing influenced the performance of the calibration models. The first derivative spectra showed the best results with high correlation coefficient of determination [r=0.918 (QL); r=0.954 (ZC)], low RMSEP [0.65 °Brix (QL); 0.58 °Brix (ZC)], low RMSEC [0.48 °Brix (QL); 0.34°Brix (ZC)] and small difference between the'RMSEP and the RMSEC by PLS method. The nondestructive Vis/NIR measurements provided good estimates of SSC index of watermelon, and the predicted values were highly correlated with destructively measured values for SSC. The models based on smoothing spectra (Savitzky-Golay filter smoothing method) did not enhance the performance of calibration models obviously. The results indicated the feasibility of Vis/NIR diffuse transmittance spectral analysis for predicting watermelon SSC in a nondestructive way.
基金supported by the National Natural Science Foundation of China(No.61575059,No.61675062,No.21501038)the Fundamental Research Funds for the Central Universities(No.JZ2018HGPB0275,No.JZ2018HGTA0220,and No.JZ2018HGXC0001).
文摘In this study,we have developed a high-sensitivity,near-infrared photodetector based on PdSe2/GaAs heterojunction,which was made by transferring a multilayered PdSe2 film onto a planar GaAs.The as-fabricated PdSe2/GaAs heterojunction device exhibited obvious photovoltaic behavior to 808 nm illumination,indicating that the near-infrared photodetector can be used as a self-driven device without external power supply.Further device analysis showed that the hybrid heterojunction exhibited a high on/off ratio of 1.16×10^5 measured at 808 nm under zero bias voltage.The responsivity and specific detectivity of photodetector were estimated to be 171.34 mA/W and 2.36×10^11 Jones,respectively.Moreover,the device showed excellent stability and reliable repeatability.After 2 months,the photoelectric characteristics of the near-infrared photodetector hardly degrade in air,attributable to the good stability of the PdSe2.Finally,the PdSe2/GaAs-based heterojunction device can also function as a near-infrared light sensor.
文摘An intelligent line-tracking chess robot based on STM32 is introduced in this paper. Its hardware consists of photo- electric detection circuit, main control circuit, motor driven circuit, steering engine driven circuit and dial switch. The hardware structure and software flow chart of the system are described in details in this paper. The robot is driven by rear wheel motors, and the real-time position of the robot is determined by the ground information collected by infrared sensors. The heading direction of robot is adjusted by steering engine installed in front wheel, and the open angle of manipulator is controlled by the other steering engine which can ensure the robot moving chessmen accurately and quickly during the moving process. The test shows that the kind of intelligent chess robot can complete the task in a fast and accurate way.
基金This work is supported by National Natural Science Foundationof China (Grant No. 10232030,50076040,10472111)NationalBasic Research Program of China (2006CB300404).
文摘An optical readout uncooled infrared (IR) imaging detector of bimaterial cantilever array using knife-edge filter operation (KEFO) is demonstrated. The angle change of each cantilever in a focal plane array (FPA) can be simultaneously detected with a resolution of 10.5 degree. A deformation magnifying substrate-free micro-cantilever unit with multi-fold interval metaUized legs is specially designed and modeled. A FPA with 160×160 pixels is fabricated and thermal images with noise equivalent temperature difference (NETD) of 400 mK are obtained by this imaging detector.
基金supported by Beijing Natural Science Foundation(L172028)the National Natural Science Foundation of China(No.21773012 and No.91753118)+1 种基金the Recruitment Program of Global Youth Expertsthe Fundamental Research Funds for Central Universities
文摘Tryptophan derivatives have long been used as site-specific biological probes. 4-Cyanotrypto- phan emits in the visible region and is the smallest blue fluorescent amino acid probe for bio- logical applications. Other indole or tryptophan analogs may emit at even longer wavelengths than 4-cyanotryptophan. We performed FTIR, UV-Vis, and steady-state and time-resolved fluorescence spectroscopy on six ester-derivatized indoles in different solvents. Methyl indole- 4-carboxylate emits at 450 nrn with a long fluorescence lifetirne, and is a promising candidate for a fluorescent probe. The ester-derivatized indoles could be used as spectroscopic probes to study local protein environments. Our measurements provide a guide for choosing esterderivatized indoles to use in practice and data for computational modeling of the effect of substitution on the electronic transitions of indole.
文摘A novel kind of multi-quantum well infrared photodetector(QWlP) is presented. In the new structure device,a p-type contact layer has been grown on the top of the conventional structure of QWlP,then a small tunneling current is instead of the large compensatory current,which made the device low dark current and low noise characteristics. The measured result of dark current is consistent with the calculated result, and the noise of the new structure QWIP is decreased to one third of the conventional QWlP.
文摘Signals from infrared detector are very weak in SO2 concentration measuring system.In order to improve the sensitivity of detection,combining with filter correlation technology and infrared absorption principle,the weak signal processing circuit is designed according to correlation detection technology.Under laboratory conditions,system performance of SO2 concentration is tested,and the experimental data are analyzed and processed.Then relationship of SO2 concentration and the measuring voltage is provided to prove that the design improves measuring sensitivity of the system.