In this study,the impact of environmental factors on tropical cyclone(TC)outer-core size was investigated for both migrating and local TCs in the South China Sea during the period 2001–2019.Among all the thermodynami...In this study,the impact of environmental factors on tropical cyclone(TC)outer-core size was investigated for both migrating and local TCs in the South China Sea during the period 2001–2019.Among all the thermodynamic and dynamic factors,the low-level environmental helicity showed the strongest positive correlation with TC outer-core size.Large helicity favors the development and organization of convection in TCs,and the corresponding strong inflow and large angular momentum fluxes into the system is beneficial for the maintenance and enlargement of TC outer-core size.Besides,the asymmetric distribution of helicity may account for the asymmetry of TC outer-core size.Therefore,the environmental helicity,as an integrated dynamic factor,can provide an alternative view on TC outer-core size.展开更多
基金This work was supported by the National Key Research and Development Program of China[grant number 2017YFC1501603]the National Natural Science Foundation of China[grant numbers 41675053,42175062,and 61827091].
文摘In this study,the impact of environmental factors on tropical cyclone(TC)outer-core size was investigated for both migrating and local TCs in the South China Sea during the period 2001–2019.Among all the thermodynamic and dynamic factors,the low-level environmental helicity showed the strongest positive correlation with TC outer-core size.Large helicity favors the development and organization of convection in TCs,and the corresponding strong inflow and large angular momentum fluxes into the system is beneficial for the maintenance and enlargement of TC outer-core size.Besides,the asymmetric distribution of helicity may account for the asymmetry of TC outer-core size.Therefore,the environmental helicity,as an integrated dynamic factor,can provide an alternative view on TC outer-core size.