AIM:To test the ability of penehyclidine hydrochloride (PHC) to attenuate intestinal injury in a rat cardiopulmonary bypass (CPB) model.METHODS:Male Sprague-Dawley rats were randomly divided into six groups (eight eac...AIM:To test the ability of penehyclidine hydrochloride (PHC) to attenuate intestinal injury in a rat cardiopulmonary bypass (CPB) model.METHODS:Male Sprague-Dawley rats were randomly divided into six groups (eight each):sham-operated control;sham-operated low-dose PHC control (0.6 mg/kg);sham-operated high-dose PHC control (2.0 mg/kg);CPB vehicle control;CPB low-dose PHC (0.6 mg/kg);and CPB high-dose PHC (2.0 mg/kg).Blood samples were collected from the femoral artery 2 h after CPB for determination of plasma diamine oxidase (DAO),D-lactate and endotoxin levels.Spleen,liver,mesenteric lymph nodes and lung were removed for biochemical analyses.Intestinal tissue ultrastructure was examined by electron microscopy.RESULTS:In the sham-operated groups,high-and low-dose-PHC had no significant impact on the levels of DAO,D-lactate and endotoxin,or the incidence of intestinal bacterial translocation (BT).Serum levels of DAO,D-lactate,endotoxin and the incidence of intestinal BT were significantly increased in the surgical groups,compared with the sham-operated groups (0.543 ± 0.061,5.697 ± 0.272,14.75 ± 2.46,and 0/40 vs 1.038 ± 0.252,9.377 ± 0.769,60.37 ± 5.63,and 30/40,respectively,all P < 0.05).PHC alleviated the biochemical and histopathological changes in a dosedependent manner.Serum levels of DAO,D-lactate,and endotoxin and the incidence of intestinal BT in the high-dose PHC group were significantly lower than in the low-dose PHC group (0.637 ± 0.064,6.972 ± 0.349,29.64 ± 5.49,and 14/40 vs 0.998 ± 0.062,7.835 ± 0.330,38.56 ± 4.28,and 6/40,respectively,all P < 0.05).CONCLUSION:PHC protects the structure and function of the intestinal mucosa from injury after CPB in rats.展开更多
Magnetic starch particles (MSPs) were synthesized in water-in-oil mieroemulsion at room temperature. MSPs were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTI...Magnetic starch particles (MSPs) were synthesized in water-in-oil mieroemulsion at room temperature. MSPs were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTIR), zeta potential system, thermogravimetric analysis (TGA) and vibrating sample magnetometry (VSM). The average diameter of the MSPs was 220 nm, dispersed with well-proportioned size and magnetic resonance, the saturation magnetization was 3.64 A.mR/kg. MSP was coated with poly-L-lysine (PLL), and then the surface of PLL-MSP was combined with fluorescein isothiocynate (FITC). Results show that fluorescent/magnetic starch particles (FMSPs) are of stable photo-bleaching capability compared with free FITC, with low bio-toxicity and certain function of magnetic separation. It is expected that FMSPs are bifimctional nano-materials including fluorescence labelling and magnetic separation.展开更多
基金Supported by A grant from the Doctor Priming Foundation of Liaoning Province,No. 20091099
文摘AIM:To test the ability of penehyclidine hydrochloride (PHC) to attenuate intestinal injury in a rat cardiopulmonary bypass (CPB) model.METHODS:Male Sprague-Dawley rats were randomly divided into six groups (eight each):sham-operated control;sham-operated low-dose PHC control (0.6 mg/kg);sham-operated high-dose PHC control (2.0 mg/kg);CPB vehicle control;CPB low-dose PHC (0.6 mg/kg);and CPB high-dose PHC (2.0 mg/kg).Blood samples were collected from the femoral artery 2 h after CPB for determination of plasma diamine oxidase (DAO),D-lactate and endotoxin levels.Spleen,liver,mesenteric lymph nodes and lung were removed for biochemical analyses.Intestinal tissue ultrastructure was examined by electron microscopy.RESULTS:In the sham-operated groups,high-and low-dose-PHC had no significant impact on the levels of DAO,D-lactate and endotoxin,or the incidence of intestinal bacterial translocation (BT).Serum levels of DAO,D-lactate,endotoxin and the incidence of intestinal BT were significantly increased in the surgical groups,compared with the sham-operated groups (0.543 ± 0.061,5.697 ± 0.272,14.75 ± 2.46,and 0/40 vs 1.038 ± 0.252,9.377 ± 0.769,60.37 ± 5.63,and 30/40,respectively,all P < 0.05).PHC alleviated the biochemical and histopathological changes in a dosedependent manner.Serum levels of DAO,D-lactate,and endotoxin and the incidence of intestinal BT in the high-dose PHC group were significantly lower than in the low-dose PHC group (0.637 ± 0.064,6.972 ± 0.349,29.64 ± 5.49,and 14/40 vs 0.998 ± 0.062,7.835 ± 0.330,38.56 ± 4.28,and 6/40,respectively,all P < 0.05).CONCLUSION:PHC protects the structure and function of the intestinal mucosa from injury after CPB in rats.
基金Project(200501) supported by the "985" Program of China
文摘Magnetic starch particles (MSPs) were synthesized in water-in-oil mieroemulsion at room temperature. MSPs were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTIR), zeta potential system, thermogravimetric analysis (TGA) and vibrating sample magnetometry (VSM). The average diameter of the MSPs was 220 nm, dispersed with well-proportioned size and magnetic resonance, the saturation magnetization was 3.64 A.mR/kg. MSP was coated with poly-L-lysine (PLL), and then the surface of PLL-MSP was combined with fluorescein isothiocynate (FITC). Results show that fluorescent/magnetic starch particles (FMSPs) are of stable photo-bleaching capability compared with free FITC, with low bio-toxicity and certain function of magnetic separation. It is expected that FMSPs are bifimctional nano-materials including fluorescence labelling and magnetic separation.