Many of the drugs currently used in medical practice are racemates. The enantiomers of a racemic drug differ in pharmacodynamics and/or pharmacokinetics, thus in some cases it is preferable to develop pure enantiomers...Many of the drugs currently used in medical practice are racemates. The enantiomers of a racemic drug differ in pharmacodynamics and/or pharmacokinetics, thus in some cases it is preferable to develop pure enantiomers by racemic switch. In a recent study by Pai et al, dexrabeprazole [R(+)-rabeprazole] (10 mg) was found to be more effective than rabeprazole (20 mg) in the treatment of gastroesophageal reflux disease. We read with great interest in this study and discussed whether such racemic switch would be applicable to other proton-pump inhibitors (PPIs). A literature review indicates that stereoselective pharmacokinetics, rather than stereoselective pharmacological activity, is the main cause of differences in clinical efficacy between pure enantiomer and racemic PPI. Racemic switches of PPI provide the therapeutic advantages such as reducing metabolic load on the body, simplifying pharmacokinetics, providing benefit to the non-responders to standard dose of racemate, more homogenous response to treatment and better efficacy with equal safety. Further studies in quantitative structure-activity relationships (QSARs) are needed to address the fact that the preferred enantiomer of PPI is not always in the same absolute configuration, i.e., S-form is for omeprazole, pantoprazole and tenatoprazole whereas R-form is for lansoprazole and rabeprazole.展开更多
The kinetics of Candida rugosa lipase catalyzed esterification of racemic ibuprofen with n-butanol in isooctane was studied. The kinetic study was carried out with the addition of 0.1% and 2% (by volume) of water for ...The kinetics of Candida rugosa lipase catalyzed esterification of racemic ibuprofen with n-butanol in isooctane was studied. The kinetic study was carried out with the addition of 0.1% and 2% (by volume) of water for enzyme activation respectively when celite was added into isooctane for enzyme dispersion. The specific initial rate for S-ibuprofen can be fitted with the Ping Pong Bi Bi mechanism with dead-end competitive inhibition by the alcohol. The time courses of the enantioselective esterification of the two ibuprofen enantiomers with different initial substrate concentrations and water contents were simulated with a model in which both effects of enzyme inactivation by long term reaction and reversed hydrolytic reaction under high water content were taken into consideration.展开更多
The influence of solvent (in its gaseous state) on the stability of crystallized organic compounds was investigated. Through two examples of studies on the solid/vapour equilibria made in our lab, several behaviors we...The influence of solvent (in its gaseous state) on the stability of crystallized organic compounds was investigated. Through two examples of studies on the solid/vapour equilibria made in our lab, several behaviors were highlighted: (i) a new hydrated phase (thermodynamically stable) of an active pharmaceutical ingredient (API) was detected after the recrystallization starting from a deliquescent state, (ii) a spontaneous resolution of a hydrated racemic compound towards an anhydrous conglomerate can occur during the desolvation under the precise conditions of temperature and humidity. This study illustrates that knowledge about solid/vapour equilibrium is a crucial step during the complete characterization of solid organic compounds.展开更多
Chiral separation that is closely related to daily life is a meaningful research. Polysaccharide-(e.g., cellulose, amylose derivatives) based chiral packing materials afford powerful chiral stationary phases(CSPs) tow...Chiral separation that is closely related to daily life is a meaningful research. Polysaccharide-(e.g., cellulose, amylose derivatives) based chiral packing materials afford powerful chiral stationary phases(CSPs) toward a broad range of racemic compounds. However, considering the explosive growth of specific chiral drugs, the separation efficiencies of these CSPs need further improvement, which calls for new approaches and strategies. Smart polymers can change their physical or chemical properties dynamically and reversibly according to the external stimuli(e.g., thermo-, pH, solvent, ion, light, critical parameters for chromatographic separation) exerted on them, subsequently resulting in tunable changes in the macroscopic properties of materials. In addition to their excellent controllability, the introduction of chiral characteristics into the backbones or side-chains of smart polymers provides a promising route to realize reversibly conformational transition in response to the chiral analytes. This dramatic transition may significantly improve the performance of materials in chiral separation through modulating the enantioselective interactions between materials and analytes. With the help of chirality-responsive polymers, intelligent and switchable CSPs could be developed and applied in column-liquid chromatography. In these systems, the elution order or enantioselectivity of chiral drugs can be precisely modulated, which will help to solve many challenging problems that involve complicated enantiomers. In this paper we introduce some typical examples of smart polymers that serve as the basis for a discussion of emerging developments of CPSs, and then briefly outline the recent CSPs based on natural and certain synthetic polymers.展开更多
基金Supported by Zhejiang Provincial Bureau of Education, No. 20070227Zhejiang Medical Association, No.2007ZYC18Association of Zhejiang Hospital Administration, No. 2007AZHA-KEB312
文摘Many of the drugs currently used in medical practice are racemates. The enantiomers of a racemic drug differ in pharmacodynamics and/or pharmacokinetics, thus in some cases it is preferable to develop pure enantiomers by racemic switch. In a recent study by Pai et al, dexrabeprazole [R(+)-rabeprazole] (10 mg) was found to be more effective than rabeprazole (20 mg) in the treatment of gastroesophageal reflux disease. We read with great interest in this study and discussed whether such racemic switch would be applicable to other proton-pump inhibitors (PPIs). A literature review indicates that stereoselective pharmacokinetics, rather than stereoselective pharmacological activity, is the main cause of differences in clinical efficacy between pure enantiomer and racemic PPI. Racemic switches of PPI provide the therapeutic advantages such as reducing metabolic load on the body, simplifying pharmacokinetics, providing benefit to the non-responders to standard dose of racemate, more homogenous response to treatment and better efficacy with equal safety. Further studies in quantitative structure-activity relationships (QSARs) are needed to address the fact that the preferred enantiomer of PPI is not always in the same absolute configuration, i.e., S-form is for omeprazole, pantoprazole and tenatoprazole whereas R-form is for lansoprazole and rabeprazole.
文摘The kinetics of Candida rugosa lipase catalyzed esterification of racemic ibuprofen with n-butanol in isooctane was studied. The kinetic study was carried out with the addition of 0.1% and 2% (by volume) of water for enzyme activation respectively when celite was added into isooctane for enzyme dispersion. The specific initial rate for S-ibuprofen can be fitted with the Ping Pong Bi Bi mechanism with dead-end competitive inhibition by the alcohol. The time courses of the enantioselective esterification of the two ibuprofen enantiomers with different initial substrate concentrations and water contents were simulated with a model in which both effects of enzyme inactivation by long term reaction and reversed hydrolytic reaction under high water content were taken into consideration.
文摘The influence of solvent (in its gaseous state) on the stability of crystallized organic compounds was investigated. Through two examples of studies on the solid/vapour equilibria made in our lab, several behaviors were highlighted: (i) a new hydrated phase (thermodynamically stable) of an active pharmaceutical ingredient (API) was detected after the recrystallization starting from a deliquescent state, (ii) a spontaneous resolution of a hydrated racemic compound towards an anhydrous conglomerate can occur during the desolvation under the precise conditions of temperature and humidity. This study illustrates that knowledge about solid/vapour equilibrium is a crucial step during the complete characterization of solid organic compounds.
基金supported by the National Natural Science Foundation of China(21104061,21275114,91127027,51173142)the China National Funds for Distinguished Young Scientists(51325302)+2 种基金the Major State Basic Research Development Program of China(2013CB933002)the Program of Introducing Talents of Discipline to Universities(B13035)Hubei Provincial Department of Education for financial assistance through the Chutian Scholar Program
文摘Chiral separation that is closely related to daily life is a meaningful research. Polysaccharide-(e.g., cellulose, amylose derivatives) based chiral packing materials afford powerful chiral stationary phases(CSPs) toward a broad range of racemic compounds. However, considering the explosive growth of specific chiral drugs, the separation efficiencies of these CSPs need further improvement, which calls for new approaches and strategies. Smart polymers can change their physical or chemical properties dynamically and reversibly according to the external stimuli(e.g., thermo-, pH, solvent, ion, light, critical parameters for chromatographic separation) exerted on them, subsequently resulting in tunable changes in the macroscopic properties of materials. In addition to their excellent controllability, the introduction of chiral characteristics into the backbones or side-chains of smart polymers provides a promising route to realize reversibly conformational transition in response to the chiral analytes. This dramatic transition may significantly improve the performance of materials in chiral separation through modulating the enantioselective interactions between materials and analytes. With the help of chirality-responsive polymers, intelligent and switchable CSPs could be developed and applied in column-liquid chromatography. In these systems, the elution order or enantioselectivity of chiral drugs can be precisely modulated, which will help to solve many challenging problems that involve complicated enantiomers. In this paper we introduce some typical examples of smart polymers that serve as the basis for a discussion of emerging developments of CPSs, and then briefly outline the recent CSPs based on natural and certain synthetic polymers.