Fatigue behavior of AZ31B magnesium alloy electron beam welded joint undergoing cyclic loading was investigated by infrared thermography. Temperature evolution throughout a fatigue process was presented and the mechan...Fatigue behavior of AZ31B magnesium alloy electron beam welded joint undergoing cyclic loading was investigated by infrared thermography. Temperature evolution throughout a fatigue process was presented and the mechanism of heat generationwas discussed. Fatigue limit of the welded joint was predicted and the fatigue damage was also assessed based ontheevolution of the temperatureand hotspot zone on the specimen surfaceduring fatigue tests. The presented results show that infrared thermography can not onlyquicklypredict the fatigue behavior of the welded joint, but also qualitatively identify the evolution of fatigue damage in real time. It is found that the predicted fatigue limit agrees well with the conventionalS-Nexperimental results. The evolution of the temperatureand hotspot zone on the specimen surface can be an effectivefatigue damage indicatorfor effectiveevaluationof magnesium alloy electron beam welded joint.展开更多
Infrared window in hypersonic missile usually suffers complex aerodynamic force/heat during high-speed flight.A finite element method was adopted to simulate the thermal and stress response of microscale functional fi...Infrared window in hypersonic missile usually suffers complex aerodynamic force/heat during high-speed flight.A finite element method was adopted to simulate the thermal and stress response of microscale functional film for infrared window under different aerodynamic heats/forces conditions.Temperature and stress distribution were obtained with different heat fluxes.There is almost constant stress distribution along the film thickness except a sudden decrease near the substrate.The maximum stresses are located at the points which are 0.3 mm away from the edges.Different film materials result in different stress values.The temperature and stress in ZrN are larger than those in Y2O3.Besides the numerical simulation,an oxygen propane flame jet impingement test was performed to investigate thermal shock failure of the infrared window.Some place of the window surface has spots damage and some place has line crack damage after thermal shock.展开更多
The effect of a novel active nucleating agent(TBC8-eb) on the isothermal crystallization of poly(L-lactic acid) (PLLA) was studied by differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(...The effect of a novel active nucleating agent(TBC8-eb) on the isothermal crystallization of poly(L-lactic acid) (PLLA) was studied by differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(FTIR) . The analysis on kinetics demonstrates that TBC8-eb can not only accelerate the crystallization rate but also transform most of the original spherulite crystals of PLLA into sheaf-like crystals. Furthermore,the free energy of folding(σe) of PLLA and PLLA with TBC8-eb is 0.15 and 0.06 J·m-2,respectively,which suggests that the addition of TBC8-eb favors the regular folding of molecule chains in the crystallization of PLLA,improv-ing its crystallization rate. The FTIR results show that TBC8-eb can accelerate the conformational ordering of PLLA in the isothermal crystallization. The conformational ordering of PLLA nucleated with TBC8-eb begins with the interchain interaction of CH3,and then a short helix emerges where a couple of CH3 groups interact.展开更多
Ionic liquid 1-methyl-3-(3-sulfopropyl) -imidazolium hydrogen sulfate([C3SO3HMIM][HSO4]) was synthesized and characterized by infrared spectroscopy(IR) ,nuclear magnetic resonance(1H and 13C NMR) and ultraviolet-visib...Ionic liquid 1-methyl-3-(3-sulfopropyl) -imidazolium hydrogen sulfate([C3SO3HMIM][HSO4]) was synthesized and characterized by infrared spectroscopy(IR) ,nuclear magnetic resonance(1H and 13C NMR) and ultraviolet-visible(UV-Vis) spectra. Its thermal stability was also examined by thermogravimetric analysis(TGA) and a differential scanning calorimeter(DSC) . The mole fraction solubilities of [C3SO3HMIM][HSO4]) in 12 selected solvents(n-pentane,n-hexane,n-heptane,benzene,toluene,ethylbenzene,acetone,2-butanone,3-methyl-2-butanone,tetrahydrofuran,ethyl acetate and dichloromethane) in the temperature range from 289.15 to 363.15 K were meas-ured using a static analytical method and correlated with an empirical equation.展开更多
The heat transfer coefficient in a multidimensional heat conduction problem is obtained from the solution of the inverse heat conduction problem based on the thermographic temperature measurement. The modified one-dim...The heat transfer coefficient in a multidimensional heat conduction problem is obtained from the solution of the inverse heat conduction problem based on the thermographic temperature measurement. The modified one-dimensional correction method (MODCM), along with the finite volume method, is employed for both two- and three-dimensional inverse problems. A series of numerical experiments are conducted in order to verify the effectiveness of the method. In addition, the effect of the temperature measurement error, the ending criterion of the iteration, etc. on the result of the inverse problem is investigated. It is proved that the method is a simple, stable and accurate one that can solve successfully the inverse heat conduction problem.展开更多
This paper presents an overview of experimental investigations conducted at China University of Mining and Technology Beijing(CUMTB) on roadway excavation using large-scale geomechanical model tests.The simulated sedi...This paper presents an overview of experimental investigations conducted at China University of Mining and Technology Beijing(CUMTB) on roadway excavation using large-scale geomechanical model tests.The simulated sedimentary rocks are composed by alternating layers of sandstone, mudstone and coal seam inclined at varied angles with respect to the horizontal including 0°, 45°, 60°, and 90°. During the excavation, infrared thermography was employed to detect the thermal response of the surrounding rocks under excavation. The obtained raw thermograms were processed using denoising algorithm, data reduction procedure and Fourier analysis. The infrared temperature(IRT) characterizes the overall rock response; the processed thermal images represent the structural behavior, and the Fourier spectrum describes damage development in the frequency domain. Deeper understanding was achieved by the comparative analyses of excavation in differently inclined rock masses using the image features of IRTs, thermal images and Fourier spectra.展开更多
The thermal decomposition process was studied by the TG–DTA analyzer. The results show that the decomposition process of sodium hydroxyethyl sulfonate consisted of three stages: the mass loss for the first, the secon...The thermal decomposition process was studied by the TG–DTA analyzer. The results show that the decomposition process of sodium hydroxyethyl sulfonate consisted of three stages: the mass loss for the first, the second and third stages may be about the groups of CH_3CH_2OH, CH_3CHO and SO_2 volatilized, respectively. The decomposition residuum of three stages was analyzed by FT-IR, and the results of FT-IR agreed with the decomposition process predicted by theoretical weight loss. The specific heat capacity of sodium hydroxyethyl sulfonate was determined by differential scanning calorimetry(DSC). The melting temperature and melting enthalpy were obtained to be 465.41 K and 25.69 kJ·mol^(-1), respectively. The molar specific heat capacity of sodium hydroxyethyl sulfonate was determinated from 310.15 K to 365.15 K and expressed as a function of temperature.展开更多
According to the data characteristics of Landsat thematic mapper (TM) and MODIS, a new fu sion algorithm about thermal infrared data has been proposed in the article based on improving wave let reconstruction. Under...According to the data characteristics of Landsat thematic mapper (TM) and MODIS, a new fu sion algorithm about thermal infrared data has been proposed in the article based on improving wave let reconstruction. Under the domain of neighborhood wavelet reconstruction, data of TM and MO DIS are divided into three layers using wavelet decomposition. The texture information of TM data is retained by fusing highfrequency information. The neighborhood correction coefficient method (NC CM) is set up based on the search neighborhood of a certain size to fuse lowfrequency information. Thermal infrared value of MODIS data is reduced to the space value of TM data by applying NCCM. The data with high spectrum, high spatial and high temporal resolution, are obtained through the al gorithm in the paper. Verification results show that the texture information of TM data and high spec tral information of MODIS data could be preserved well by the fusion algorithm. This article could provide technical support for high precision and fast extraction of the surface environment parame ters.展开更多
Glasses in the series of xWO3-0.31P2O5-0.31B2O3-(0.38-x)Cs2O (0.01 ≤ x ≤0.28) (G1-G4: x= 0.01, 0.1, 0.19, 0.28) were prepared by sol-gel method. Glassy phase in the samples were ascertained by powder X-ray d...Glasses in the series of xWO3-0.31P2O5-0.31B2O3-(0.38-x)Cs2O (0.01 ≤ x ≤0.28) (G1-G4: x= 0.01, 0.1, 0.19, 0.28) were prepared by sol-gel method. Glassy phase in the samples were ascertained by powder X-ray diffraction pattern. Differential scanning calorimetry (DSC) traces of the samples show glass transition temperature Tg, in the range 247-253 ℃. IR spectra at 300 K of G1-G4 show the presence of [WO6], [WO4], [PO4]^3-, [PO3]^2-, [BO4]^+, [BO3] units in the glass matrix. Observed electron paramagnetic resonance (EPR) lineshapes show two signals with very different intensities which are associated with W^5+ (5d^1) and Mo^5+ (4d^1) (impurity) paramagnetic sites. Signal with values ofg factors in the range 1.68 〈 g⊥ 〈 1.72 and 1.58 〈 gⅡ 〈 1.62 are due to W^5+ ions present in axially distorted octahedral symmetry. The optical absorption spectra show that the W^5+ ions have pyramidal coordination, involving a tungstyl ion WO^3+ (C4v symmetry). EPR and optical studies suggest the existence of blocks of octahedra linked by tungsten clusters.展开更多
In this study, the water-based ferromagnetic fluid and magnetic resin made from chitosan and cerium complex (MRCCC) were successfully prepared by using the chemical co-precipitation technique and by the reversed-pha...In this study, the water-based ferromagnetic fluid and magnetic resin made from chitosan and cerium complex (MRCCC) were successfully prepared by using the chemical co-precipitation technique and by the reversed-phase suspension cross-linking polymerization. MRCCC presented uniform and narrow panicle size distribution as determined by the Laser Panicles Sizer. The Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) study demonstrated that there were iron and cerium existing in MRCCC. The movement of MRCCC under magnetic field proved its magnetic property. The swelling kinetics in water or solutions with different pH indicated that MRCCC could be applied in solutions with pH greater than 1.0. The ferromagnetic fluid particles were stable in MRCCC soaked in solutions with pH 〉2.0. In view of these results, MRCCC can be used as material for separation, clarification, adsorption, sustained release and hydrolysis activity.展开更多
The paper presents a scheme of optimization of the cooling process of the gas turbine blade. As an optimization criterion has been taken into account on the outer surface temperature of the blade. Inverse problem is s...The paper presents a scheme of optimization of the cooling process of the gas turbine blade. As an optimization criterion has been taken into account on the outer surface temperature of the blade. Inverse problem is solved for stationary heat conduction in which beside the optimization criterion of the heat transfer coefficient on the outer surface of the blade the temperature distribution is known, and the values sought are the heat transfer coefficients and surface temperature of the cooling channels. This problem was solved by the boundary element method using SVD algorithm and Tikhonov regularization. The temperature and heat transfer coefficient of cooling channels obtained from the inverse problem was oscillating in nature. This solution is nonphysical, so the heat transfer coefficients on the surface of cooling channels were averaged. Then the problem was solved simply with averaged coefficients of heat transfer on the surface of the cooling channels and the known distribution on the outer surface of blade. The temperature distribution obtained from the solution of direct problem with averaged values of heat transfer coefficient was compared with the criterion of optimization.The calculation results obtained using the SVD algorithm gave the temperature distribution on the external wall of the blade closer to the criterion of optimization.展开更多
Objective To preliminarily observe the effects of cupping on localized skin temperature of patients with back pain.Methods A total of 43 patients with back pain were included in this study.They were treated with mediu...Objective To preliminarily observe the effects of cupping on localized skin temperature of patients with back pain.Methods A total of 43 patients with back pain were included in this study.They were treated with medium-sized cups with a volume of 260 mL The randomly selected Xinshu(心俞 BL 15)on one side(37 cases) was given cupping treatment while that on the other side as the control.And Shenshu(肾俞 BL 23)(6 cases) was treated in the same way.The thermal infrared imager was used to record the changes in localized skin temperature before and after cupping(for 10 minutes),and then comparison was made with that of the control side.Results After cupping,the localized skin temperature fell and then rose.When the cup was removed after retaining for 10 minutes,the localized skin temperature was(0.4±0.9) ℃(P=0.004) lower than that before cupping;10 minutes after cupping off,the localized skin temperature was(0.4±1.1) ℃(P=0.016) higher than that before cupping while(0.8±0.9) ℃ higher than that when cupping off.The skin surface temperature on the control side declined steadily.Conclusion After cupping treatment,the localized skin temperature fell and then rose while that of the control side declined steadily.It might be related to therapeutic effects.展开更多
OBJECTIVE: To use infrared thermography to take cat cerebral cortical temperature in order to visualize the temperature of its entire cerebral cortex as an image. METHODS: After performing craniotomy for exposure of c...OBJECTIVE: To use infrared thermography to take cat cerebral cortical temperature in order to visualize the temperature of its entire cerebral cortex as an image. METHODS: After performing craniotomy for exposure of cerebral hemispheres in 52 cats, their cortical temperatures were displayed and analyzed by computerized infrared thermovision. RESULTS: The temperature distribution of the cerebral cortex was uneven, with a maximum difference of 2.3 degrees C among different cortical areas. The temperature in the cortical anterior-inferior area (including the Ant. Ectosylvian, the lower section of Mid. Ectosylvian and the Ant. Sylvian) was higher compared to the temperature in the posterior-super-parts (Post. Suprasylvian, Mid. Suprasylvian, Post. Lateral and Ant. Lateral). Locations with higher or lower temperatures showed little change within three days after craniotomy, and the cortical temperature held steady. CONCLUSION: The use of cortical infrared thermo-images for display of cat cortical temperature is possible and has many advantages over traditional methods. This new neuroimaging method has a practical value in neurological research.展开更多
基金Project(51305292)supported by the National Natural Science Foundation of ChinaProject(20105429001)supported by the National Aeronautical Science Foundation of China
文摘Fatigue behavior of AZ31B magnesium alloy electron beam welded joint undergoing cyclic loading was investigated by infrared thermography. Temperature evolution throughout a fatigue process was presented and the mechanism of heat generationwas discussed. Fatigue limit of the welded joint was predicted and the fatigue damage was also assessed based ontheevolution of the temperatureand hotspot zone on the specimen surfaceduring fatigue tests. The presented results show that infrared thermography can not onlyquicklypredict the fatigue behavior of the welded joint, but also qualitatively identify the evolution of fatigue damage in real time. It is found that the predicted fatigue limit agrees well with the conventionalS-Nexperimental results. The evolution of the temperatureand hotspot zone on the specimen surface can be an effectivefatigue damage indicatorfor effectiveevaluationof magnesium alloy electron beam welded joint.
基金Projects (51222205,51372053) supported by the National Natural Science Foundation of ChinaProject (JC201305) supported by Heilongjiang Provincial Science Fund for Distinguished Young Scholars,ChinaProject (20112302110036) supported by Ph.D. Programs Foundation of Ministry of Education of China
文摘Infrared window in hypersonic missile usually suffers complex aerodynamic force/heat during high-speed flight.A finite element method was adopted to simulate the thermal and stress response of microscale functional film for infrared window under different aerodynamic heats/forces conditions.Temperature and stress distribution were obtained with different heat fluxes.There is almost constant stress distribution along the film thickness except a sudden decrease near the substrate.The maximum stresses are located at the points which are 0.3 mm away from the edges.Different film materials result in different stress values.The temperature and stress in ZrN are larger than those in Y2O3.Besides the numerical simulation,an oxygen propane flame jet impingement test was performed to investigate thermal shock failure of the infrared window.Some place of the window surface has spots damage and some place has line crack damage after thermal shock.
基金Supported by the National Natural Science Foundation of China (20876042) Program of Shanghai Subject Chief Scientist (10XD1401500) Research Fund for the Doctoral Program of Higher Education of China
文摘The effect of a novel active nucleating agent(TBC8-eb) on the isothermal crystallization of poly(L-lactic acid) (PLLA) was studied by differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(FTIR) . The analysis on kinetics demonstrates that TBC8-eb can not only accelerate the crystallization rate but also transform most of the original spherulite crystals of PLLA into sheaf-like crystals. Furthermore,the free energy of folding(σe) of PLLA and PLLA with TBC8-eb is 0.15 and 0.06 J·m-2,respectively,which suggests that the addition of TBC8-eb favors the regular folding of molecule chains in the crystallization of PLLA,improv-ing its crystallization rate. The FTIR results show that TBC8-eb can accelerate the conformational ordering of PLLA in the isothermal crystallization. The conformational ordering of PLLA nucleated with TBC8-eb begins with the interchain interaction of CH3,and then a short helix emerges where a couple of CH3 groups interact.
文摘Ionic liquid 1-methyl-3-(3-sulfopropyl) -imidazolium hydrogen sulfate([C3SO3HMIM][HSO4]) was synthesized and characterized by infrared spectroscopy(IR) ,nuclear magnetic resonance(1H and 13C NMR) and ultraviolet-visible(UV-Vis) spectra. Its thermal stability was also examined by thermogravimetric analysis(TGA) and a differential scanning calorimeter(DSC) . The mole fraction solubilities of [C3SO3HMIM][HSO4]) in 12 selected solvents(n-pentane,n-hexane,n-heptane,benzene,toluene,ethylbenzene,acetone,2-butanone,3-methyl-2-butanone,tetrahydrofuran,ethyl acetate and dichloromethane) in the temperature range from 289.15 to 363.15 K were meas-ured using a static analytical method and correlated with an empirical equation.
文摘The heat transfer coefficient in a multidimensional heat conduction problem is obtained from the solution of the inverse heat conduction problem based on the thermographic temperature measurement. The modified one-dimensional correction method (MODCM), along with the finite volume method, is employed for both two- and three-dimensional inverse problems. A series of numerical experiments are conducted in order to verify the effectiveness of the method. In addition, the effect of the temperature measurement error, the ending criterion of the iteration, etc. on the result of the inverse problem is investigated. It is proved that the method is a simple, stable and accurate one that can solve successfully the inverse heat conduction problem.
基金provided by the Special Funds for the Major State Basic Research Project(No.2006CB202200)the Innovative Team Development Project of the state Educational Ministry of China(No.IRT0656)
文摘This paper presents an overview of experimental investigations conducted at China University of Mining and Technology Beijing(CUMTB) on roadway excavation using large-scale geomechanical model tests.The simulated sedimentary rocks are composed by alternating layers of sandstone, mudstone and coal seam inclined at varied angles with respect to the horizontal including 0°, 45°, 60°, and 90°. During the excavation, infrared thermography was employed to detect the thermal response of the surrounding rocks under excavation. The obtained raw thermograms were processed using denoising algorithm, data reduction procedure and Fourier analysis. The infrared temperature(IRT) characterizes the overall rock response; the processed thermal images represent the structural behavior, and the Fourier spectrum describes damage development in the frequency domain. Deeper understanding was achieved by the comparative analyses of excavation in differently inclined rock masses using the image features of IRTs, thermal images and Fourier spectra.
文摘The thermal decomposition process was studied by the TG–DTA analyzer. The results show that the decomposition process of sodium hydroxyethyl sulfonate consisted of three stages: the mass loss for the first, the second and third stages may be about the groups of CH_3CH_2OH, CH_3CHO and SO_2 volatilized, respectively. The decomposition residuum of three stages was analyzed by FT-IR, and the results of FT-IR agreed with the decomposition process predicted by theoretical weight loss. The specific heat capacity of sodium hydroxyethyl sulfonate was determined by differential scanning calorimetry(DSC). The melting temperature and melting enthalpy were obtained to be 465.41 K and 25.69 kJ·mol^(-1), respectively. The molar specific heat capacity of sodium hydroxyethyl sulfonate was determinated from 310.15 K to 365.15 K and expressed as a function of temperature.
基金Supported by the National Natural Science Foundation of China(No.41101503)the National Social Science Foundation of China(No.11&ZD161)Graduate Innovative Scientific Research Project of Chongqing Technology and Business University(No.yjscxx2014-052-29)
文摘According to the data characteristics of Landsat thematic mapper (TM) and MODIS, a new fu sion algorithm about thermal infrared data has been proposed in the article based on improving wave let reconstruction. Under the domain of neighborhood wavelet reconstruction, data of TM and MO DIS are divided into three layers using wavelet decomposition. The texture information of TM data is retained by fusing highfrequency information. The neighborhood correction coefficient method (NC CM) is set up based on the search neighborhood of a certain size to fuse lowfrequency information. Thermal infrared value of MODIS data is reduced to the space value of TM data by applying NCCM. The data with high spectrum, high spatial and high temporal resolution, are obtained through the al gorithm in the paper. Verification results show that the texture information of TM data and high spec tral information of MODIS data could be preserved well by the fusion algorithm. This article could provide technical support for high precision and fast extraction of the surface environment parame ters.
文摘Glasses in the series of xWO3-0.31P2O5-0.31B2O3-(0.38-x)Cs2O (0.01 ≤ x ≤0.28) (G1-G4: x= 0.01, 0.1, 0.19, 0.28) were prepared by sol-gel method. Glassy phase in the samples were ascertained by powder X-ray diffraction pattern. Differential scanning calorimetry (DSC) traces of the samples show glass transition temperature Tg, in the range 247-253 ℃. IR spectra at 300 K of G1-G4 show the presence of [WO6], [WO4], [PO4]^3-, [PO3]^2-, [BO4]^+, [BO3] units in the glass matrix. Observed electron paramagnetic resonance (EPR) lineshapes show two signals with very different intensities which are associated with W^5+ (5d^1) and Mo^5+ (4d^1) (impurity) paramagnetic sites. Signal with values ofg factors in the range 1.68 〈 g⊥ 〈 1.72 and 1.58 〈 gⅡ 〈 1.62 are due to W^5+ ions present in axially distorted octahedral symmetry. The optical absorption spectra show that the W^5+ ions have pyramidal coordination, involving a tungstyl ion WO^3+ (C4v symmetry). EPR and optical studies suggest the existence of blocks of octahedra linked by tungsten clusters.
基金supported by the Key Projects in the National Science and Technology Pillar Program during the Eleventh Five-year Plan Period(No.2008BA-D94B09)the National Natural Science Foundation of China(No.30972289)
文摘In this study, the water-based ferromagnetic fluid and magnetic resin made from chitosan and cerium complex (MRCCC) were successfully prepared by using the chemical co-precipitation technique and by the reversed-phase suspension cross-linking polymerization. MRCCC presented uniform and narrow panicle size distribution as determined by the Laser Panicles Sizer. The Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) study demonstrated that there were iron and cerium existing in MRCCC. The movement of MRCCC under magnetic field proved its magnetic property. The swelling kinetics in water or solutions with different pH indicated that MRCCC could be applied in solutions with pH greater than 1.0. The ferromagnetic fluid particles were stable in MRCCC soaked in solutions with pH 〉2.0. In view of these results, MRCCC can be used as material for separation, clarification, adsorption, sustained release and hydrolysis activity.
文摘The paper presents a scheme of optimization of the cooling process of the gas turbine blade. As an optimization criterion has been taken into account on the outer surface temperature of the blade. Inverse problem is solved for stationary heat conduction in which beside the optimization criterion of the heat transfer coefficient on the outer surface of the blade the temperature distribution is known, and the values sought are the heat transfer coefficients and surface temperature of the cooling channels. This problem was solved by the boundary element method using SVD algorithm and Tikhonov regularization. The temperature and heat transfer coefficient of cooling channels obtained from the inverse problem was oscillating in nature. This solution is nonphysical, so the heat transfer coefficients on the surface of cooling channels were averaged. Then the problem was solved simply with averaged coefficients of heat transfer on the surface of the cooling channels and the known distribution on the outer surface of blade. The temperature distribution obtained from the solution of direct problem with averaged values of heat transfer coefficient was compared with the criterion of optimization.The calculation results obtained using the SVD algorithm gave the temperature distribution on the external wall of the blade closer to the criterion of optimization.
文摘Objective To preliminarily observe the effects of cupping on localized skin temperature of patients with back pain.Methods A total of 43 patients with back pain were included in this study.They were treated with medium-sized cups with a volume of 260 mL The randomly selected Xinshu(心俞 BL 15)on one side(37 cases) was given cupping treatment while that on the other side as the control.And Shenshu(肾俞 BL 23)(6 cases) was treated in the same way.The thermal infrared imager was used to record the changes in localized skin temperature before and after cupping(for 10 minutes),and then comparison was made with that of the control side.Results After cupping,the localized skin temperature fell and then rose.When the cup was removed after retaining for 10 minutes,the localized skin temperature was(0.4±0.9) ℃(P=0.004) lower than that before cupping;10 minutes after cupping off,the localized skin temperature was(0.4±1.1) ℃(P=0.016) higher than that before cupping while(0.8±0.9) ℃ higher than that when cupping off.The skin surface temperature on the control side declined steadily.Conclusion After cupping treatment,the localized skin temperature fell and then rose while that of the control side declined steadily.It might be related to therapeutic effects.
基金ThisresearchwassupportedbytheNationalNaturalScienceFoundationofChina (No .3 9770 92 5 )
文摘OBJECTIVE: To use infrared thermography to take cat cerebral cortical temperature in order to visualize the temperature of its entire cerebral cortex as an image. METHODS: After performing craniotomy for exposure of cerebral hemispheres in 52 cats, their cortical temperatures were displayed and analyzed by computerized infrared thermovision. RESULTS: The temperature distribution of the cerebral cortex was uneven, with a maximum difference of 2.3 degrees C among different cortical areas. The temperature in the cortical anterior-inferior area (including the Ant. Ectosylvian, the lower section of Mid. Ectosylvian and the Ant. Sylvian) was higher compared to the temperature in the posterior-super-parts (Post. Suprasylvian, Mid. Suprasylvian, Post. Lateral and Ant. Lateral). Locations with higher or lower temperatures showed little change within three days after craniotomy, and the cortical temperature held steady. CONCLUSION: The use of cortical infrared thermo-images for display of cat cortical temperature is possible and has many advantages over traditional methods. This new neuroimaging method has a practical value in neurological research.