When the frigate moves forward,due to the ship motion such as pitching and rolling,the flow over the flight deck becomes very complex,which may seriously threaten the taking off and landing of the ship-borne helicopte...When the frigate moves forward,due to the ship motion such as pitching and rolling,the flow over the flight deck becomes very complex,which may seriously threaten the taking off and landing of the ship-borne helicopter.The flow fields over the different modified simple frigate shape(SFS)models,consisting of the hangar and flight deck,were numerically studied by changing the ratio of hangar height and length in the static state and pitching state.For different models,the contours of velocity and pressure above the flight deck,as well as the variations of velocity components of the observation points and line in static state and pitching state were compared and analyzed.The results show that the size of recirculation zone and the location of the reattachment point have distinct differences for diverse models,and reveal the tracks of recirculation zone’s center and reattachment position in a pitching period.In addition,the velocity components at two observation positions also change periodically with the periodic motion.Furthermore,the deviations of the velocity components in static state and pitching state are relatively large,therefore,the flow fields in static state cannot be used to simulate that in pitching state correctly.展开更多
The nanoparticles of the hydrophobic drug of danazol with narrow size distribution are facilely prepared by controlled high-gravity anti-solvent precipitation (HGAP) process. Intensified micromixing and uniform nucl...The nanoparticles of the hydrophobic drug of danazol with narrow size distribution are facilely prepared by controlled high-gravity anti-solvent precipitation (HGAP) process. Intensified micromixing and uniform nucleation environment are created by the high-gravity equipment (rotating packed bed) in carrying out the anti-solvent precipitation process to produce nanoparticles. The average particle size decreases from 55 μm of the raw danazol to 190 nm of the nanoparticles. The Brunauer-Emmett-Teller (BET) surface area sharply increases from 0.66 m^2·g^-1 to 15.08 m^2·g^-l. Accordingly, the dissolution rate is greatly improved. The molecular state, chemical composition, and crystal form of the danazol nanoparticles remains unchanged after processing according to Fourier transform infrared (FTIR) and X-ray diffraction (XRD), The high recovery ratio and continuous production capacity are highly appreciated in industry. Therefore, the HGAP method might offer a general and facile platform for mass production of hydrophobic pharmaceutical danazol particles in nanometer range.展开更多
Although the calculation of radiative transfer in the middle-shortwave infrared band is important in the field of optical remote sensing, studies in this area of research are rare in China. Both solar reflection and a...Although the calculation of radiative transfer in the middle-shortwave infrared band is important in the field of optical remote sensing, studies in this area of research are rare in China. Both solar reflection and atmospheric emission should be considered when calculating radiative transfer in the middle-shortwave infrared band. This paper presents a new radiative transfer model based on the doubling and adding method. The new model uses approximate calculations of direct solar reflection,multiple scattering, and thermal emissions for a finitely thin atmospheric layer and considers both the solar and thermal sources of radiation. To verify its accuracy, the calculation results produced by the model for four typical scenarios(single layer at night,multi-layer aerosols, double-layer with ice and water clouds, and multi-layer with clouds and aerosols) were compared with those of the DISORT model. With the exception of a few channels, the absolute deviation between the two models was less than2×10^(-6) K. For the same calculation, the computation speed of the new model was approximately two to three times faster than that of the DISORT model. Sensitivity studies were performed to evaluate the error resulting from using simplified calculation methods in the new model. The results obtained in this study indicated that atmospheric thermal emission made a significant contribution to the measured radiance in the strong-absorption band(2230–2400 cm^(-1)), whereas solar radiation could be neglected in this region. However, neglecting solar radiation in the window region(2400–2580 cm^(-1)) introduced error on the order of dozens of K. Employing the average-layer temperature method simplified the calculation of thermal radiation but caused a larger error in the strong-absorption band than in the window region. In the doubling and adding method, the calculation error decreased as the value used for minimum optical thickness decreased. Under the condition of satisfying the requirement of calculation precision, we can consider using the layer-average temperature radiation method and selecting a relative larger minimum optical thickness value to improve the calculation efficiency. The new radiative calculation model proposed herein can be used in the simulation, inversion, and assimilation of middle-shortwave infrared measurements by hyper-spectral satellite instruments.展开更多
The crown-like zinc oxide(Zn O)samples,which are composed of a hexagonal cap and a tower-like shaft,are prepared by vapor transport method.The hexagonal cap,working as a whispering gallery mode(WGM)resonant cavity,dem...The crown-like zinc oxide(Zn O)samples,which are composed of a hexagonal cap and a tower-like shaft,are prepared by vapor transport method.The hexagonal cap,working as a whispering gallery mode(WGM)resonant cavity,demonstrates density-dependent ultraviolet(UV)lasing emission with a broadened and squared photoluminescence(PL)profile under UV excitation at 355 nm.Theoretical analyses based on Fermi golden rule show that the broadened spectrum profile results from the special optical mode density characteristics in a WGM micro-cavity,which is in agreement with the observed results.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(No. NS2019006)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘When the frigate moves forward,due to the ship motion such as pitching and rolling,the flow over the flight deck becomes very complex,which may seriously threaten the taking off and landing of the ship-borne helicopter.The flow fields over the different modified simple frigate shape(SFS)models,consisting of the hangar and flight deck,were numerically studied by changing the ratio of hangar height and length in the static state and pitching state.For different models,the contours of velocity and pressure above the flight deck,as well as the variations of velocity components of the observation points and line in static state and pitching state were compared and analyzed.The results show that the size of recirculation zone and the location of the reattachment point have distinct differences for diverse models,and reveal the tracks of recirculation zone’s center and reattachment position in a pitching period.In addition,the velocity components at two observation positions also change periodically with the periodic motion.Furthermore,the deviations of the velocity components in static state and pitching state are relatively large,therefore,the flow fields in static state cannot be used to simulate that in pitching state correctly.
基金Supported by the National High Technology Research and Development Program of China (2006AA030202)the Talent Training Program of Beijing (2007B022)
文摘The nanoparticles of the hydrophobic drug of danazol with narrow size distribution are facilely prepared by controlled high-gravity anti-solvent precipitation (HGAP) process. Intensified micromixing and uniform nucleation environment are created by the high-gravity equipment (rotating packed bed) in carrying out the anti-solvent precipitation process to produce nanoparticles. The average particle size decreases from 55 μm of the raw danazol to 190 nm of the nanoparticles. The Brunauer-Emmett-Teller (BET) surface area sharply increases from 0.66 m^2·g^-1 to 15.08 m^2·g^-l. Accordingly, the dissolution rate is greatly improved. The molecular state, chemical composition, and crystal form of the danazol nanoparticles remains unchanged after processing according to Fourier transform infrared (FTIR) and X-ray diffraction (XRD), The high recovery ratio and continuous production capacity are highly appreciated in industry. Therefore, the HGAP method might offer a general and facile platform for mass production of hydrophobic pharmaceutical danazol particles in nanometer range.
基金supported by the National High Technology Research and Development Program(Grant No.2015AA123704)the National Natural Science Foundation of China(Grant No.41475031)the Special Fund for Scientific Research(Meteorology)in the Public Interest(Grant Nos.GYHY201506074&GYHY201506002)
文摘Although the calculation of radiative transfer in the middle-shortwave infrared band is important in the field of optical remote sensing, studies in this area of research are rare in China. Both solar reflection and atmospheric emission should be considered when calculating radiative transfer in the middle-shortwave infrared band. This paper presents a new radiative transfer model based on the doubling and adding method. The new model uses approximate calculations of direct solar reflection,multiple scattering, and thermal emissions for a finitely thin atmospheric layer and considers both the solar and thermal sources of radiation. To verify its accuracy, the calculation results produced by the model for four typical scenarios(single layer at night,multi-layer aerosols, double-layer with ice and water clouds, and multi-layer with clouds and aerosols) were compared with those of the DISORT model. With the exception of a few channels, the absolute deviation between the two models was less than2×10^(-6) K. For the same calculation, the computation speed of the new model was approximately two to three times faster than that of the DISORT model. Sensitivity studies were performed to evaluate the error resulting from using simplified calculation methods in the new model. The results obtained in this study indicated that atmospheric thermal emission made a significant contribution to the measured radiance in the strong-absorption band(2230–2400 cm^(-1)), whereas solar radiation could be neglected in this region. However, neglecting solar radiation in the window region(2400–2580 cm^(-1)) introduced error on the order of dozens of K. Employing the average-layer temperature method simplified the calculation of thermal radiation but caused a larger error in the strong-absorption band than in the window region. In the doubling and adding method, the calculation error decreased as the value used for minimum optical thickness decreased. Under the condition of satisfying the requirement of calculation precision, we can consider using the layer-average temperature radiation method and selecting a relative larger minimum optical thickness value to improve the calculation efficiency. The new radiative calculation model proposed herein can be used in the simulation, inversion, and assimilation of middle-shortwave infrared measurements by hyper-spectral satellite instruments.
基金supported by the National Natural Science Foundation of China(Nos.60725413 and 61401173)the National Spark Program(No.2013GA690405)+1 种基金the Natural Science Foundation of Education Bureau of Jiangsu Province(Nos.12KJD510003 and 13KJD510002)the Natural Science Foundation of Anhui Province in China(No.11040606M10)
文摘The crown-like zinc oxide(Zn O)samples,which are composed of a hexagonal cap and a tower-like shaft,are prepared by vapor transport method.The hexagonal cap,working as a whispering gallery mode(WGM)resonant cavity,demonstrates density-dependent ultraviolet(UV)lasing emission with a broadened and squared photoluminescence(PL)profile under UV excitation at 355 nm.Theoretical analyses based on Fermi golden rule show that the broadened spectrum profile results from the special optical mode density characteristics in a WGM micro-cavity,which is in agreement with the observed results.