To identify the species in liquid surface using mass spectrometry,we must eliminate or reduce interferences during the vaporization or desorption of the species from the liquid surface.It is much more challenging to i...To identify the species in liquid surface using mass spectrometry,we must eliminate or reduce interferences during the vaporization or desorption of the species from the liquid surface.It is much more challenging to isolate the ionic,larger species from the liquid surface,because of the frangible structures and the higher solvation energies of those species.Here we demonstrate a new mass spectrometry in which the ionic species at the liquid surface can be desorbed with ultrasoft infrared picosecond laser pulses while the liquid surface is not breached.This laser desorption assisted mass spectrometry is not only a powerful tool to detect the fragile species but also promising to investigate vibrational energy transfer dynamics in the liquid surface.展开更多
A promising method to improve the attosecond pulse intensity has been theoretically pre- sented by properly adding an ultraviolet pulse into the orthogonal two-color field. The results show that by properly adding a 1...A promising method to improve the attosecond pulse intensity has been theoretically pre- sented by properly adding an ultraviolet pulse into the orthogonal two-color field. The results show that by properly adding a 125 nm ultraviolet pulse to the orthogonal two-color field, not only the harmonic yield is enhanced by 2 orders of magnitude compared with the original orthogonal two-color field case, but also the single short quantum path, which is selected to contribute to the harmonic spectrum, results in an ultrabroad 152 eV bandwidth. Moreover, by optimizing the laser parameters, we find that the harmonic enhancement is not very sen- sitive to the pulse duration and the polarized angle of the assisted ultraviolet pulse, which is much better for experimental realization. As a result, an isolated pulse with duration of 38 as can be obtained, which is 2 orders of magnitude improvement in comparison with the original two-color orthogonal field case.展开更多
Since the poor performance of orthogonal binary Pulse Position Modulation (PPM) compared with binary Pulse Amplitude Modulation (PAM), this paper presents a new modulation scheme named Pulse Width Modulation (PWM) for...Since the poor performance of orthogonal binary Pulse Position Modulation (PPM) compared with binary Pulse Amplitude Modulation (PAM), this paper presents a new modulation scheme named Pulse Width Modulation (PWM) for Impulse Radio Ultra-WideBand (IR-UWB) communication systems. This modulation scheme uses pulses with equal amplitude and different widths to carry different information. The receiver employs differences between similarity coefficients among these pulses to distinguish different information. Both theoretical analysis and simulation results verify that this novel scheme has a Signal to Noise Ratio (SNR) gain of about 1.75 dB compared with or- thogonal binary PPM, and has an SNR loss of about 1.4 dB compared with binary PAM. Although both the theoretical analysis and simulations are based on time-hopping multiple access, this modulation scheme can also be applied to other accessing techniques of UWB communication systems.展开更多
We show that by scanning the frequency of a single mode infrared (IR) optical parametric oscillator (IR- OPO) laser to excite the molecular species of interest and fixing the frequency of a vacuum ultraviolet (VU...We show that by scanning the frequency of a single mode infrared (IR) optical parametric oscillator (IR- OPO) laser to excite the molecular species of interest and fixing the frequency of a vacuum ultraviolet (VUV) laser to photoionize the IR excited species, high-resolution IR spectra of polyatomic neutrals can be obtained with high sensitivity. The fact that this IR-VUV-photoion (IR-VUV-PI) method is based on VUV photoionization probe, and thus, allows the identification of the neutral IR absorber, makes it applicable for IR spectroscopy measurements of isotopemers, radicals, and clusters, which usually exist as impure samples. The highly resolved IR-VUV-PI measurements achieved using the single mode IR-OPO laser have made possible the selection of single rovibrational states of CH3X (X=Br and I), C2H4, and C3H4 for VUV-pulsed field ionization-photoelectron (VUV-PFI-PE) measurements, resulting in rovibrationally resolved photoelectron spectra for these polyatomic molecules. These experiments show that the signal- to-noise ratios of the IR-VUV-PI and IR-VUV-PFI-PE spectra obtained by employing the high-resolution IR-OPO laser are significantly higher than those observed in previous IR-VUV-PI and IR-VUV-PFI-PE studies using a low-resolution IR-OPO laser. Further improvement in sensitivity of IR-VUV-PI and IR- VUV-PFI-PE measurements by using the collinear arrangement of IR-VUV lasers and molecular beam is discussed.展开更多
The effects of pulsing electromagnetic fields(PEMFs)on cells are very important subjects in the field of bioelectromagnetics.In this experiment,the cytogenetic effects of PEMF on domestic pig lymphocytes were tested i...The effects of pulsing electromagnetic fields(PEMFs)on cells are very important subjects in the field of bioelectromagnetics.In this experiment,the cytogenetic effects of PEMF on domestic pig lymphocytes were tested in vitro.Pig lymphocytes in RPMI 1640 medium were exposed to PEMFs of 100 kHz and 200 kHz for 12,24 and 48 hours.Chromosomal aberrations(aneuploidy,breaks,gaps,et al)were significantly increased in exposed cultures,and of these aberrations,56%chromosomal or chromatid breaks and 42%gaps induced by PEMFs were the points of pig chromosomal fragile sites.The baseline frequency of sister chromatid exchange(SCE)increased after exposing lymphocytes continuously to PEMFs of 100 kHz and 200 kHz for 48 hours.These results suggested that the exposure to PEMFs might induce a type of DNA lesion and chromosomal aberrations.展开更多
A 3D temperature field distribution of biological tissue for superficial hyperthermia using a pulse modulated microwave (PMMW) was presented. A 3D sliced homogeneous phantom was radiated by the PMMW and an infrared ...A 3D temperature field distribution of biological tissue for superficial hyperthermia using a pulse modulated microwave (PMMW) was presented. A 3D sliced homogeneous phantom was radiated by the PMMW and an infrared thermal imager was applied to image temperature distribution throughout the phantom. The period of the PMMW is 3 s and the output power is 35 W. The temperature rises by at least 3 ℃ in the phantom when the duty cycle varies from 1/3, 1/2, 2/3 to 1 (denoted by scenarios 1-4). Both the accumulative temperature-volume histogram and the relative depth-area ratio histogram show that the maximum temperature rise (MTR) is 6.6 and 8 ℃ in scenarios 2 and 3, and they are superior to scenarios 1 and 4. Furthermore, the PMMW can control temperature field distribution of biological tissue. It provides both preliminary basis for thermal volume control and new technology for temperature control and monitor in superficial hyperthermia.展开更多
For impulse radio ultra-wideband (IR-UWB) ranging systems,effects of the settings of transmitter-related parameters, which include the pulse shape, the bandwidth and the pulse repetition interval (PRI), on ranging acc...For impulse radio ultra-wideband (IR-UWB) ranging systems,effects of the settings of transmitter-related parameters, which include the pulse shape, the bandwidth and the pulse repetition interval (PRI), on ranging accuracy were studied through theoretical analysis and simulations. Both the match-filtering based coherent TOA estimation algorithm and the energy-detection based non-coherent algorithm were used during simulations. Results show that the pulse shape has the least effect on the ranging accuracy. Increasing the pulse bandwidth can improve the ranging performance, but the performance is hardly improved any more when the bandwidth is increased beyond a certain level. PRI should be set long enough to guarantee the accurate ranging, because when PRI is shorter than the maximum excess delay of the channel, the ranging accuracy will be deteriorated by inter-pulse interference.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0450202).
文摘To identify the species in liquid surface using mass spectrometry,we must eliminate or reduce interferences during the vaporization or desorption of the species from the liquid surface.It is much more challenging to isolate the ionic,larger species from the liquid surface,because of the frangible structures and the higher solvation energies of those species.Here we demonstrate a new mass spectrometry in which the ionic species at the liquid surface can be desorbed with ultrasoft infrared picosecond laser pulses while the liquid surface is not breached.This laser desorption assisted mass spectrometry is not only a powerful tool to detect the fragile species but also promising to investigate vibrational energy transfer dynamics in the liquid surface.
文摘A promising method to improve the attosecond pulse intensity has been theoretically pre- sented by properly adding an ultraviolet pulse into the orthogonal two-color field. The results show that by properly adding a 125 nm ultraviolet pulse to the orthogonal two-color field, not only the harmonic yield is enhanced by 2 orders of magnitude compared with the original orthogonal two-color field case, but also the single short quantum path, which is selected to contribute to the harmonic spectrum, results in an ultrabroad 152 eV bandwidth. Moreover, by optimizing the laser parameters, we find that the harmonic enhancement is not very sen- sitive to the pulse duration and the polarized angle of the assisted ultraviolet pulse, which is much better for experimental realization. As a result, an isolated pulse with duration of 38 as can be obtained, which is 2 orders of magnitude improvement in comparison with the original two-color orthogonal field case.
文摘Since the poor performance of orthogonal binary Pulse Position Modulation (PPM) compared with binary Pulse Amplitude Modulation (PAM), this paper presents a new modulation scheme named Pulse Width Modulation (PWM) for Impulse Radio Ultra-WideBand (IR-UWB) communication systems. This modulation scheme uses pulses with equal amplitude and different widths to carry different information. The receiver employs differences between similarity coefficients among these pulses to distinguish different information. Both theoretical analysis and simulation results verify that this novel scheme has a Signal to Noise Ratio (SNR) gain of about 1.75 dB compared with or- thogonal binary PPM, and has an SNR loss of about 1.4 dB compared with binary PAM. Although both the theoretical analysis and simulations are based on time-hopping multiple access, this modulation scheme can also be applied to other accessing techniques of UWB communication systems.
文摘We show that by scanning the frequency of a single mode infrared (IR) optical parametric oscillator (IR- OPO) laser to excite the molecular species of interest and fixing the frequency of a vacuum ultraviolet (VUV) laser to photoionize the IR excited species, high-resolution IR spectra of polyatomic neutrals can be obtained with high sensitivity. The fact that this IR-VUV-photoion (IR-VUV-PI) method is based on VUV photoionization probe, and thus, allows the identification of the neutral IR absorber, makes it applicable for IR spectroscopy measurements of isotopemers, radicals, and clusters, which usually exist as impure samples. The highly resolved IR-VUV-PI measurements achieved using the single mode IR-OPO laser have made possible the selection of single rovibrational states of CH3X (X=Br and I), C2H4, and C3H4 for VUV-pulsed field ionization-photoelectron (VUV-PFI-PE) measurements, resulting in rovibrationally resolved photoelectron spectra for these polyatomic molecules. These experiments show that the signal- to-noise ratios of the IR-VUV-PI and IR-VUV-PFI-PE spectra obtained by employing the high-resolution IR-OPO laser are significantly higher than those observed in previous IR-VUV-PI and IR-VUV-PFI-PE studies using a low-resolution IR-OPO laser. Further improvement in sensitivity of IR-VUV-PI and IR- VUV-PFI-PE measurements by using the collinear arrangement of IR-VUV lasers and molecular beam is discussed.
文摘The effects of pulsing electromagnetic fields(PEMFs)on cells are very important subjects in the field of bioelectromagnetics.In this experiment,the cytogenetic effects of PEMF on domestic pig lymphocytes were tested in vitro.Pig lymphocytes in RPMI 1640 medium were exposed to PEMFs of 100 kHz and 200 kHz for 12,24 and 48 hours.Chromosomal aberrations(aneuploidy,breaks,gaps,et al)were significantly increased in exposed cultures,and of these aberrations,56%chromosomal or chromatid breaks and 42%gaps induced by PEMFs were the points of pig chromosomal fragile sites.The baseline frequency of sister chromatid exchange(SCE)increased after exposing lymphocytes continuously to PEMFs of 100 kHz and 200 kHz for 48 hours.These results suggested that the exposure to PEMFs might induce a type of DNA lesion and chromosomal aberrations.
基金Project(50977064) supported by the National Natural Science Foundation of China
文摘A 3D temperature field distribution of biological tissue for superficial hyperthermia using a pulse modulated microwave (PMMW) was presented. A 3D sliced homogeneous phantom was radiated by the PMMW and an infrared thermal imager was applied to image temperature distribution throughout the phantom. The period of the PMMW is 3 s and the output power is 35 W. The temperature rises by at least 3 ℃ in the phantom when the duty cycle varies from 1/3, 1/2, 2/3 to 1 (denoted by scenarios 1-4). Both the accumulative temperature-volume histogram and the relative depth-area ratio histogram show that the maximum temperature rise (MTR) is 6.6 and 8 ℃ in scenarios 2 and 3, and they are superior to scenarios 1 and 4. Furthermore, the PMMW can control temperature field distribution of biological tissue. It provides both preliminary basis for thermal volume control and new technology for temperature control and monitor in superficial hyperthermia.
基金Sponsored by the National Natural Science Foundation of China (Grant No.60432040)the Natural Science Foundation of Guangdong Privince(Grant No.9451805707003235)
文摘For impulse radio ultra-wideband (IR-UWB) ranging systems,effects of the settings of transmitter-related parameters, which include the pulse shape, the bandwidth and the pulse repetition interval (PRI), on ranging accuracy were studied through theoretical analysis and simulations. Both the match-filtering based coherent TOA estimation algorithm and the energy-detection based non-coherent algorithm were used during simulations. Results show that the pulse shape has the least effect on the ranging accuracy. Increasing the pulse bandwidth can improve the ranging performance, but the performance is hardly improved any more when the bandwidth is increased beyond a certain level. PRI should be set long enough to guarantee the accurate ranging, because when PRI is shorter than the maximum excess delay of the channel, the ranging accuracy will be deteriorated by inter-pulse interference.