In this study,Mg-based composites,by the addition of ZnO,Ca_(2)ZnSi_(2)O_(7),Ca_(2)MgSi_(2)O_(7),and CaSiO_(3)as bioactive agents,were fabricated using friction stir processing.The microstructure and in vitro assessme...In this study,Mg-based composites,by the addition of ZnO,Ca_(2)ZnSi_(2)O_(7),Ca_(2)MgSi_(2)O_(7),and CaSiO_(3)as bioactive agents,were fabricated using friction stir processing.The microstructure and in vitro assessment of bioactivity,biodegradation rate,and corrosion behavior of the resultant composites were investigated in simulated body fluid(SBF).The results showed that during the immersion of composites in SBF for 28 d,due to the release of Ca^(2+)and PO_(4)^(3-)ions,hydroxyapatite(HA)crystals with cauliflower shaped morphology were deposited on the surface of composites,confirming good bioactivity of composites.In addition,due to the uniform distribution of bioceramic powders throughout Mg matrix,grain refinement of the Mg matrix,and uniform redistribution of secondary phase particles,the polarization resistance increased,and the biodegradation rate of composites significantly reduced compared to monolithic Mg matrix.The polarization corrosion resistance of Mg-ZnO increased from 0.216 to 2.499 kΩ/cm^(2)compared to monolithic Mg alloy.Additionally,Mg-ZnO composite with the weight loss of 0.0217 g after 28 d immersion showed lower weight loss compared to other samples with increasing immersion time.Moreover,Mg-ZnO composite with the biodegradation rate of 37.71 mm/a exhibited lower biodegradation rate compared to other samples with increasing immersion time.展开更多
The factors that influence magnesium(Mg)corrosion in vitro are systematically evaluated from a review of the relevant literature. We analysed the influence of the following factors on Mg biocorrosion in vitro:(i)...The factors that influence magnesium(Mg)corrosion in vitro are systematically evaluated from a review of the relevant literature. We analysed the influence of the following factors on Mg biocorrosion in vitro:(i) inorganic ions,including both anions and cations,(ii) organic components such as proteins, amino acids and vitamins, and(iii) experimental parameters such as temperature, p H, buffer system and flow rate. Considerations and recommendations towards a standardised approach to in vitro biocorrosion testing are given. Several potential simulated body fluids are recommended. Implementing a standardised approach to experimental parameters has the potential to significantly reduce variability between in vitro biocorrosion tests, and to help build towards a methodology that accurately and consistently mimics in vivo corrosion. However, there are also knowledge gaps with regard to how best to characterise the in vivo environment and corrosion mechanism. The assumption that blood plasma is the correct bodily fluid upon which to base in vitro methodologies is examined, and factors that influence the corrosion mechanism in vivo, such as specimen encapsulation, bear consideration for further studies.展开更多
文摘In this study,Mg-based composites,by the addition of ZnO,Ca_(2)ZnSi_(2)O_(7),Ca_(2)MgSi_(2)O_(7),and CaSiO_(3)as bioactive agents,were fabricated using friction stir processing.The microstructure and in vitro assessment of bioactivity,biodegradation rate,and corrosion behavior of the resultant composites were investigated in simulated body fluid(SBF).The results showed that during the immersion of composites in SBF for 28 d,due to the release of Ca^(2+)and PO_(4)^(3-)ions,hydroxyapatite(HA)crystals with cauliflower shaped morphology were deposited on the surface of composites,confirming good bioactivity of composites.In addition,due to the uniform distribution of bioceramic powders throughout Mg matrix,grain refinement of the Mg matrix,and uniform redistribution of secondary phase particles,the polarization resistance increased,and the biodegradation rate of composites significantly reduced compared to monolithic Mg matrix.The polarization corrosion resistance of Mg-ZnO increased from 0.216 to 2.499 kΩ/cm^(2)compared to monolithic Mg alloy.Additionally,Mg-ZnO composite with the weight loss of 0.0217 g after 28 d immersion showed lower weight loss compared to other samples with increasing immersion time.Moreover,Mg-ZnO composite with the biodegradation rate of 37.71 mm/a exhibited lower biodegradation rate compared to other samples with increasing immersion time.
基金supported by the Australian Federal Government through an Australian Government Research Training Program Scholarshipsupport of the Australian Research Council (ARC) (DP170102557 "Biodegradable magnesium alloy scaffolds for bone tissue engineering")support of the ARC Research Hub for Advanced Manufacturing of Medical Devices
文摘The factors that influence magnesium(Mg)corrosion in vitro are systematically evaluated from a review of the relevant literature. We analysed the influence of the following factors on Mg biocorrosion in vitro:(i) inorganic ions,including both anions and cations,(ii) organic components such as proteins, amino acids and vitamins, and(iii) experimental parameters such as temperature, p H, buffer system and flow rate. Considerations and recommendations towards a standardised approach to in vitro biocorrosion testing are given. Several potential simulated body fluids are recommended. Implementing a standardised approach to experimental parameters has the potential to significantly reduce variability between in vitro biocorrosion tests, and to help build towards a methodology that accurately and consistently mimics in vivo corrosion. However, there are also knowledge gaps with regard to how best to characterise the in vivo environment and corrosion mechanism. The assumption that blood plasma is the correct bodily fluid upon which to base in vitro methodologies is examined, and factors that influence the corrosion mechanism in vivo, such as specimen encapsulation, bear consideration for further studies.