基于提供的11种聚类外部指标来组合多个聚类,通过单个对象的簇标记变化递增地更新目标函数来求出共识聚类,并利用模拟退火优化算法框架来解决局部最优问题。在UCI和TREC数据库中选取10个数据集进行几种算法的外部指标聚类性能评估实验,...基于提供的11种聚类外部指标来组合多个聚类,通过单个对象的簇标记变化递增地更新目标函数来求出共识聚类,并利用模拟退火优化算法框架来解决局部最优问题。在UCI和TREC数据库中选取10个数据集进行几种算法的外部指标聚类性能评估实验,从实验数据的归一化角度和排序角度评估不同外部指标的聚类性能,结果表明:M SS 3指标从整体性能表现上最适合用于引导聚类集成,可以作为算法默认的共识函数;基于模拟退火优化算法的聚类集成算法在7个数据集上优于其他聚类方法,而DBSCAN、MCLA、Kmearns算法则在其余3个数据集上表现最好。展开更多
文摘基于提供的11种聚类外部指标来组合多个聚类,通过单个对象的簇标记变化递增地更新目标函数来求出共识聚类,并利用模拟退火优化算法框架来解决局部最优问题。在UCI和TREC数据库中选取10个数据集进行几种算法的外部指标聚类性能评估实验,从实验数据的归一化角度和排序角度评估不同外部指标的聚类性能,结果表明:M SS 3指标从整体性能表现上最适合用于引导聚类集成,可以作为算法默认的共识函数;基于模拟退火优化算法的聚类集成算法在7个数据集上优于其他聚类方法,而DBSCAN、MCLA、Kmearns算法则在其余3个数据集上表现最好。