Traveling wave differential protection has the ability,in theory,to entirely eliminate the effects of distributed capacitive current,but it cannot be applied on series-capacitor-compensated lines directly.In this pape...Traveling wave differential protection has the ability,in theory,to entirely eliminate the effects of distributed capacitive current,but it cannot be applied on series-capacitor-compensated lines directly.In this paper,unbalanced output of conventional forward and reverse traveling wave differential currents under normal operating conditions and external faults was analyzed.A new type of traveling wave differential current was defined by combining forward and reverse traveling wave differential currents.Expressions of the defined differential current when internal and external faults occur were deduced.On this basis,a new principle of traveling wave module differential protection on series-capacitor-compensated lines was proposed,and characteristics of module differential current under different faults were analyzed.The priniciple is immune to line distributed capacity,series capacitor positions,and presence or absence of MOV breakovers.The validity of this scheme was verified by PSACD simulations.展开更多
A series of conjugated copolymers of 9,9-dioctylfluorene and symmetrical pyrazine unit (BY) were synthesized by Suzuki copolymerization and were used as novel light-emitting materials in PLEDs.Efficient energy transfe...A series of conjugated copolymers of 9,9-dioctylfluorene and symmetrical pyrazine unit (BY) were synthesized by Suzuki copolymerization and were used as novel light-emitting materials in PLEDs.Efficient energy transfer was observed in both thin film and solution.Compared with the lowest occupied molecular orbital (LUMO) energy level of the polyfluorenes homopolymer (PFO),the lower LUMO energy levels of copolymers indicated that the introduction of the BY unit would be benefit to electron injection.The turn-on voltages of their single-layer electroluminescent (EL) devices (ITO/PEDOT/polymer/LiF/Al) were at 6.1-4.0 V,which were much lower than that of PFO (7.0 V).The maximum brightness,current efficiency,and external quantum efficiency of all PFBY copolymers were higher than those of the PFO homopolymer.The single-layer device of PFBY5 was the best one in the copolymers,with a maximum brightness of 485 cd/m2,a current efficiency of 0.29 cd/A,and an external quantum efficiency of 0.10%.The introduction of PVK and TPBI for the multilayer device of PFBY5 increased the device efficiencies,which showed a maximum brightness of 3012 cd/m2,a maximum current efficiency of 1.81 cd/A,and an external quantum efficiency of 0.66%.展开更多
文摘Traveling wave differential protection has the ability,in theory,to entirely eliminate the effects of distributed capacitive current,but it cannot be applied on series-capacitor-compensated lines directly.In this paper,unbalanced output of conventional forward and reverse traveling wave differential currents under normal operating conditions and external faults was analyzed.A new type of traveling wave differential current was defined by combining forward and reverse traveling wave differential currents.Expressions of the defined differential current when internal and external faults occur were deduced.On this basis,a new principle of traveling wave module differential protection on series-capacitor-compensated lines was proposed,and characteristics of module differential current under different faults were analyzed.The priniciple is immune to line distributed capacity,series capacitor positions,and presence or absence of MOV breakovers.The validity of this scheme was verified by PSACD simulations.
基金supported by the National Natural Science Foundation of China (50803062,60977026 & 20904055)the Science Fund for Creative Research Groups (20621401)the Natural Basic Research Foundation of China (973 Program,2009CB623601)
文摘A series of conjugated copolymers of 9,9-dioctylfluorene and symmetrical pyrazine unit (BY) were synthesized by Suzuki copolymerization and were used as novel light-emitting materials in PLEDs.Efficient energy transfer was observed in both thin film and solution.Compared with the lowest occupied molecular orbital (LUMO) energy level of the polyfluorenes homopolymer (PFO),the lower LUMO energy levels of copolymers indicated that the introduction of the BY unit would be benefit to electron injection.The turn-on voltages of their single-layer electroluminescent (EL) devices (ITO/PEDOT/polymer/LiF/Al) were at 6.1-4.0 V,which were much lower than that of PFO (7.0 V).The maximum brightness,current efficiency,and external quantum efficiency of all PFBY copolymers were higher than those of the PFO homopolymer.The single-layer device of PFBY5 was the best one in the copolymers,with a maximum brightness of 485 cd/m2,a current efficiency of 0.29 cd/A,and an external quantum efficiency of 0.10%.The introduction of PVK and TPBI for the multilayer device of PFBY5 increased the device efficiencies,which showed a maximum brightness of 3012 cd/m2,a maximum current efficiency of 1.81 cd/A,and an external quantum efficiency of 0.66%.