利用自然语言处理技术从生物医学文本中抽取药物治疗、疾病诊断等事件以及事件中涉及的疾病、药物等实体,对于生物医学领域相关学术研究以及各类生物医学应用系统具有重要意义。针对生物医学文本中的缩略词及专业术语难以识别和生物医...利用自然语言处理技术从生物医学文本中抽取药物治疗、疾病诊断等事件以及事件中涉及的疾病、药物等实体,对于生物医学领域相关学术研究以及各类生物医学应用系统具有重要意义。针对生物医学文本中的缩略词及专业术语难以识别和生物医学语义关系难以嵌入的问题,提出了一种融合外部知识和图卷积神经网络的生物医学信息联合识别模型。图卷积神经网络构建了包含实体和语义关系的异构图,能够迭代地融合本地知识图和外部知识图中的交互信息,根据得到的交互信息来进行生物医学实体对之间关系的抽取任务。预训练编码后利用图卷积神经网络构建本地和外部知识两个知识图,获得两个图中每个节点的特征表示,并且通过注意力实体链接的方法将两个图进行融合与信息迭代,进而抽取其最后一层隐藏层来完成最终的分类识别。其中统一医学语言系统(unified medical language system,UMLS)被用作实体消歧的外部知识库,实体链接器根据注意力权重选择对应实体。通过在MLEE语料库上进行的实验表明,联合任务能够实现事件抽取和触发词、元素识别的综合性能。展开更多
方面级情感分析能够准确判断出句子中方面词的情感极性,在社交、电子商务等领域发挥着重要的作用。现有的方法大多通过序列表示或者注意力机制建模上下文和目标词间的关系,忽略了文本的背景知识以及方面词之间的概念链接,导致学习到的...方面级情感分析能够准确判断出句子中方面词的情感极性,在社交、电子商务等领域发挥着重要的作用。现有的方法大多通过序列表示或者注意力机制建模上下文和目标词间的关系,忽略了文本的背景知识以及方面词之间的概念链接,导致学习到的语义关系不够充分。针对上述问题,提出一种基于知识增强的方面级情感分析模型(Aspect Based Sentiment Analysis Model Based on Knowledge Enhancement,ABSA-KE)。首先,通过预训练模型BERT提取特征并得到对应的词向量,并使用解析器获取文本对应的依存关系树,利用BiLSTM和图注意力网络联合建模来学习节点嵌入表示并获得文本向量;其次,使用外部知识库引入不同语境下的方面词知识向量来增强方面级情感分析模型;最后,进行情感分类任务。通过与已有模型对比的实验结果表明,本文所提出的模型在方面级情感分析任务上是有效且合理的。展开更多
文摘利用自然语言处理技术从生物医学文本中抽取药物治疗、疾病诊断等事件以及事件中涉及的疾病、药物等实体,对于生物医学领域相关学术研究以及各类生物医学应用系统具有重要意义。针对生物医学文本中的缩略词及专业术语难以识别和生物医学语义关系难以嵌入的问题,提出了一种融合外部知识和图卷积神经网络的生物医学信息联合识别模型。图卷积神经网络构建了包含实体和语义关系的异构图,能够迭代地融合本地知识图和外部知识图中的交互信息,根据得到的交互信息来进行生物医学实体对之间关系的抽取任务。预训练编码后利用图卷积神经网络构建本地和外部知识两个知识图,获得两个图中每个节点的特征表示,并且通过注意力实体链接的方法将两个图进行融合与信息迭代,进而抽取其最后一层隐藏层来完成最终的分类识别。其中统一医学语言系统(unified medical language system,UMLS)被用作实体消歧的外部知识库,实体链接器根据注意力权重选择对应实体。通过在MLEE语料库上进行的实验表明,联合任务能够实现事件抽取和触发词、元素识别的综合性能。
文摘方面级情感分析能够准确判断出句子中方面词的情感极性,在社交、电子商务等领域发挥着重要的作用。现有的方法大多通过序列表示或者注意力机制建模上下文和目标词间的关系,忽略了文本的背景知识以及方面词之间的概念链接,导致学习到的语义关系不够充分。针对上述问题,提出一种基于知识增强的方面级情感分析模型(Aspect Based Sentiment Analysis Model Based on Knowledge Enhancement,ABSA-KE)。首先,通过预训练模型BERT提取特征并得到对应的词向量,并使用解析器获取文本对应的依存关系树,利用BiLSTM和图注意力网络联合建模来学习节点嵌入表示并获得文本向量;其次,使用外部知识库引入不同语境下的方面词知识向量来增强方面级情感分析模型;最后,进行情感分类任务。通过与已有模型对比的实验结果表明,本文所提出的模型在方面级情感分析任务上是有效且合理的。