This paper considers the stability analysis of linear continuous-time systems, and that the dynamic matrices are affected by uncertain time-varying parameters, which are assumed to be bounded, continuously differentia...This paper considers the stability analysis of linear continuous-time systems, and that the dynamic matrices are affected by uncertain time-varying parameters, which are assumed to be bounded, continuously differentiable, with bounded rates of variation. First, sufficient conditions of stability for time-varying systems are given by the commonly used parameter-dependent quadratic Lyapunov function. Moreover, the use of homogeneous polynomial Lyapunov functions for the stability analysis of the linear system subject to the time-varying parametric uncertainty is introduced. Sufficient conditions to determine the sought after Lyapunov function is derived via a suitable paramenterization of polynomial homogeneous forms. A numerical example is given to illustrate that the stability conditions are less conservative than similar tests in the literature.展开更多
The mathematic theory for uncertainty model of line segment are summed up to achieve a general conception, and the line error hand model of εσ is a basic uncertainty model that can depict the line accuracy and quali...The mathematic theory for uncertainty model of line segment are summed up to achieve a general conception, and the line error hand model of εσ is a basic uncertainty model that can depict the line accuracy and quality efficiently while the model of εm and error entropy can be regarded as the supplement of it. The error band model will reflect and describe the influence of line uncertainty on polygon uncertainty. Therefore, the statistical characteristic of the line error is studied deeply by analyzing the probability that the line error falls into a certain range. Moreover, the theory accordance is achieved in the selecting the error buffer for line feature and the error indicator. The relationship of the accuracy of area for a polygon with the error loop for a polygon boundary is deduced and computed.展开更多
Through taking uncertain mechanical parameters of composites into consideration,this paper carries out uncertain modal analysis for an unmanned aircraft landing gear.By describing correlated multi-dimensional mechanic...Through taking uncertain mechanical parameters of composites into consideration,this paper carries out uncertain modal analysis for an unmanned aircraft landing gear.By describing correlated multi-dimensional mechanical parameters as a convex polyhedral model,the modal analysis problem of a composite landing gear is transferred into a linear fractional programming(LFR)eigenvalue solution problem.As a consequent,the extreme-point algorithm is proposed to estimate lower and upper bounds of eigenvalues,namely the exact results of eigenvalues can be easily obtained at the extreme-point locations of the convex polyhedral model.The simulation results show that the proposed model and algorithm can play an important role in the eigenvalue solution problem and possess valuable engineering significance.It will be a powerful and effective tool for further vibration analysis for the landing gear.展开更多
This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously a...This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.展开更多
Supplementary annotations on special forms 1to 4, discussion on the general characteristics of K(t) and K(t, t), and analyses on two noticeable limits are presented in this part. It is demonstrated that strong and wea...Supplementary annotations on special forms 1to 4, discussion on the general characteristics of K(t) and K(t, t), and analyses on two noticeable limits are presented in this part. It is demonstrated that strong and weak parabolic transforms can be employed to change the standard form of a multi-variable indeterminate form into xmK type, hence to derive the standard formulae of the limit and the differential.展开更多
Uncertainty on the geological contacts and the block volumes of the models along boundaries is often a major part of the global uncertainty of reserve estimation.This work introduces a geostatistical technique that ha...Uncertainty on the geological contacts and the block volumes of the models along boundaries is often a major part of the global uncertainty of reserve estimation.This work introduces a geostatistical technique that has been developed and tested in an iron ore deposit at Bafq mining district,in central Iran,and that,based on a probability criterion,helps to objectively model the geometry of this iron ore deposit.The main problem in reserve estimation of this ore body is its geometrical modeling and uncertainty in geological boundaries.This work deals with the geostatistical method of multiple indicator kriging,which is used to determine the real boundaries of ore body in different categories.This approach has potential to improve project performance and decrease operational risk.For this purpose,the ore body is separated into two categories including rich iron zone(w(Fe)>45%)and poor iron zone(20%<w(Fe)<45%).It significantly benefits to decrease the risk of reserve evaluation in the deposit.This case study also highlights the value of multiple indicator kriging as a tool for estimates the position of grade boundaries within the deposit.Comparison of the resultant probability maps with the real ore/waste contacts on the extracted levels shows that the first indicator model could separate the whole ore body(poor plus rich)from the waste zone by probability of more than 0.35,which concludes the total reserve of 53 million tons.The second indicator model applied to separate the rich and poor domains and the results show that the blocks with the estimated probability of equal to or more than 0.4 lay within the rich ore zone consisting of 15.8 million tons reserve.展开更多
The paper analyzed characters of complicated system and discussed the reason of comprehensive evaluation, realization of flexible comprehensive evaluation was researched from prospect of dynamic measure selection of e...The paper analyzed characters of complicated system and discussed the reason of comprehensive evaluation, realization of flexible comprehensive evaluation was researched from prospect of dynamic measure selection of evaluation, balance of functionality and harmony, uncertainty factor. In the end, multistage flexible comprehensive evaluation of complicated system was applied to performance evaluation of firm.展开更多
The author studies the effect of uncertain conductivity on the electroencephalography (EEG) forward problem. A three-layer spherical head model with different and random layer conductivities is considered. Polynomia...The author studies the effect of uncertain conductivity on the electroencephalography (EEG) forward problem. A three-layer spherical head model with different and random layer conductivities is considered. Polynomial Chaos (PC) is used to model the randomness. The author performs a sensitivity and correlation analysis of EEG sensors influenced by uncertain conductivity. The author addressed the sensitivity analysis at three stages: dipole location and moment averaged out, only the dipole moment averaged out, and both fixed. On average, the author observes the least influenced electrodes along the great longitudinal fissure. Also, sensors located closer to a dipole source, are of greater influence to a change in conductivity. The highly influenced sensors were on average located temporal. This was also the case in the correlation analysis. Sensors in the temporal parts of the brain are highly correlated. Whereas the sensors in the occipital and lower frontal region, though they are close together, are not so highly correlated as in the temporal regions. This study clearly shows that intrinsic sensor correlation exists, and therefore cannot be discarded, especially in the inverse problem. In the latter it makes it possible not to specify the conductivities. It also offers an easy but rigorous modeling of the stochastic propagation of uncertain conductivity to sensorial potentials (e.g., making it suited for research on optimal placing of these sensors).展开更多
The ability to estimate terrestrial water storage(TWS)is essential for monitoring hydrological extremes(e.g.,droughts and floods)and predicting future changes in the hydrological cycle.However,inadequacies in model ph...The ability to estimate terrestrial water storage(TWS)is essential for monitoring hydrological extremes(e.g.,droughts and floods)and predicting future changes in the hydrological cycle.However,inadequacies in model physics and parameters,as well as uncertainties in meteorological forcing data,commonly limit the ability of land surface models(LSMs)to accurately simulate TWS.In this study,the authors show how simulations of TWS anomalies(TWSAs)from multiple meteorological forcings and multiple LSMs can be combined in a Bayesian model averaging(BMA)ensemble approach to improve monitoring and predictions.Simulations using three forcing datasets and two LSMs were conducted over China's Mainland for the period 1979–2008.All the simulations showed good temporal correlations with satellite observations from the Gravity Recovery and Climate Experiment during 2004–08.The correlation coefficient ranged between 0.5 and 0.8 in the humid regions(e.g.,the Yangtze river basin,Huaihe basin,and Zhujiang basin),but was much lower in the arid regions(e.g.,the Heihe basin and Tarim river basin).The BMA ensemble approach performed better than all individual member simulations.It captured the spatial distribution and temporal variations of TWSAs over China's Mainland and the eight major river basins very well;plus,it showed the highest R value(>0.5)over most basins and the lowest root-mean-square error value(<40 mm)in all basins of China.The good performance of the BMA ensemble approach shows that it is a promising way to reproduce long-term,high-resolution spatial and temporal TWSA data.展开更多
The more diverse the ways and means of information acquisition are,the more complex and various the types of information are. The qualities of available information are usually uncertain,vague,imprecise,incomplete,and...The more diverse the ways and means of information acquisition are,the more complex and various the types of information are. The qualities of available information are usually uncertain,vague,imprecise,incomplete,and so on. However,the information is modeled and fused traditionally in particular,name some of the known theories: evidential,fuzzy sets,possibilistic,rough sets or conditional events,etc. For several years,researchers have explored the unification of theories enabling the fusion of multisource information and have finally considered random set theory as a powerful mathematical tool. This paper attempts to overall review the close relationships between random set theory and other theories,and introduce recent research results which present how different types of information can be dealt with in this unified framework. Finally,some possible future directions are discussed.展开更多
The flight departure process is affected by various uncertain factors,such as flight delays,scheduling delays and taxi time etc. A reliable and robust departure sequence is very important to the safe and efficient ope...The flight departure process is affected by various uncertain factors,such as flight delays,scheduling delays and taxi time etc. A reliable and robust departure sequence is very important to the safe and efficient operation for airports. An optimal scheduling model for multi-runway departure considering the arrival aircraft crossing departure runway is developed. A genetic algorithm encoding flight numbers is designed to find a near-optimal solution. After that,further establish a multi-objective dynamic scheduling model and design a hybrid algorithm to solve it,and compare and analyze the results of the two models. A quantitative analysis of departure time based on the kernel density estimation is performed,and Monte Carlo simulations are carried out to explore the impact of flight departure time’s uncertainty on departure scheduling. The results based on historical data from Guangzhou Baiyun Airport are presented,showing the advantage of the proposed model and algorithm.展开更多
This paper offeres an exact study on the robust stability of a kind of combined integrating control system, and the robust stability belongs to the analysis of a kind of quasi-polynomial with two independent time dela...This paper offeres an exact study on the robust stability of a kind of combined integrating control system, and the robust stability belongs to the analysis of a kind of quasi-polynomial with two independent time delays. The parameters of stable space under time delay uncertainty are fixed after Rekasius transformation, and then a new cluster treatment of characteristic roots (CTCR) procedure is adopted to determine the stable space. By this strategy we find that the unstable space is not continuous and both Karitonov vertices theory and Edge theory are unable to be extended to quasi-polynomial under time delay uncertainty.展开更多
The report examines the evolution of computers from digital analogs through non-yon Neumann machines to quantum computers, which are also digital analogs. In the 60 years of digital analogs successfully developed at t...The report examines the evolution of computers from digital analogs through non-yon Neumann machines to quantum computers, which are also digital analogs. In the 60 years of digital analogs successfully developed at the Institute of Electromechanics of the USSR in Leningrad. An important stage in the development of non-classical multiprocessor machine performance and reliability has been the development of recursive machines, which was carried out at the Institute of Cybernetics led V.M.Glushkov and the Leningrad Institute of Aviation Instrumentation. The general approach to the synthesis is carried out through linguo- combinatorial modeling with structured uncertainty.展开更多
In this paper, the leader-following consensus for discrete-time nmlti-agent systems with parameter uncertainties is investigated based on the event-triggered strategy. And the parameter un- certainty is assmned to be ...In this paper, the leader-following consensus for discrete-time nmlti-agent systems with parameter uncertainties is investigated based on the event-triggered strategy. And the parameter un- certainty is assmned to be norm-bounded. A consensus protocol is designed based on the event-triggered strategy to make the multi-agent systems achieve consensus without continuous communication among agents. Each agent only needs to observe its own state to determine its own triggering instants under the triggering function in this paper. In addition, a sufficient condition for the existence of the event- triggered consensus protocol is derived and presented in terms of the linear matrix inequality. Finally, a numerical example is given to illustrate to efficiency of the event-triggered consensus protocol proposed in this paper.展开更多
This paper is concerned with the problem of robust H∞ filtering for linear discrete-time systems with multiple state delays and polytopic uncertain parameters. Attention is focused on the design of full-order, reduce...This paper is concerned with the problem of robust H∞ filtering for linear discrete-time systems with multiple state delays and polytopic uncertain parameters. Attention is focused on the design of full-order, reduced-order and zeroth-order robust H∞ filters on the basis of a recently published parameter-dependent Lyapunov stability result. Sufficient conditions for the existence of such filters are formulated in terms of linear matrix inequalities, upon which admissible filters can be obtained from convex optimization problems. The proposed methodology has been shown, via a numerical example, to be much less conservative than previous filter design methods in the quadratic framework.展开更多
A Newton iteration-based interval uncertainty analysis method(NI-IUAM) is proposed to analyze the propagating effect of interval uncertainty in multidisciplinary systems. NI-IUAM decomposes one multidisciplinary syste...A Newton iteration-based interval uncertainty analysis method(NI-IUAM) is proposed to analyze the propagating effect of interval uncertainty in multidisciplinary systems. NI-IUAM decomposes one multidisciplinary system into single disciplines and utilizes a Newton iteration equation to obtain the upper and lower bounds of coupled state variables at each iterative step.NI-IUAM only needs to determine the bounds of uncertain parameters and does not require specific distribution formats. In this way, NI-IUAM may greatly reduce the necessity for raw data. In addition, NI-IUAM can accelerate the convergence process as a result of the super-linear convergence of Newton iteration. The applicability of the proposed method is discussed, in particular that solutions obtained in each discipline must be compatible in multidisciplinary systems. The validity and efficiency of NI-IUAM is demonstrated by both numerical and engineering examples.展开更多
基金The Major Program of National Natural Science Foundation of China(No.11190015)the National Natural Science Foundation of China(No.61374006)
文摘This paper considers the stability analysis of linear continuous-time systems, and that the dynamic matrices are affected by uncertain time-varying parameters, which are assumed to be bounded, continuously differentiable, with bounded rates of variation. First, sufficient conditions of stability for time-varying systems are given by the commonly used parameter-dependent quadratic Lyapunov function. Moreover, the use of homogeneous polynomial Lyapunov functions for the stability analysis of the linear system subject to the time-varying parametric uncertainty is introduced. Sufficient conditions to determine the sought after Lyapunov function is derived via a suitable paramenterization of polynomial homogeneous forms. A numerical example is given to illustrate that the stability conditions are less conservative than similar tests in the literature.
基金Project supported by the National Natural Science Foundation of China (No.40301043) .
文摘The mathematic theory for uncertainty model of line segment are summed up to achieve a general conception, and the line error hand model of εσ is a basic uncertainty model that can depict the line accuracy and quality efficiently while the model of εm and error entropy can be regarded as the supplement of it. The error band model will reflect and describe the influence of line uncertainty on polygon uncertainty. Therefore, the statistical characteristic of the line error is studied deeply by analyzing the probability that the line error falls into a certain range. Moreover, the theory accordance is achieved in the selecting the error buffer for line feature and the error indicator. The relationship of the accuracy of area for a polygon with the error loop for a polygon boundary is deduced and computed.
基金supported by the National Nature Science Foundation of China(No.51805503)the Beijing Natural Science Foundation(No.3202035)。
文摘Through taking uncertain mechanical parameters of composites into consideration,this paper carries out uncertain modal analysis for an unmanned aircraft landing gear.By describing correlated multi-dimensional mechanical parameters as a convex polyhedral model,the modal analysis problem of a composite landing gear is transferred into a linear fractional programming(LFR)eigenvalue solution problem.As a consequent,the extreme-point algorithm is proposed to estimate lower and upper bounds of eigenvalues,namely the exact results of eigenvalues can be easily obtained at the extreme-point locations of the convex polyhedral model.The simulation results show that the proposed model and algorithm can play an important role in the eigenvalue solution problem and possess valuable engineering significance.It will be a powerful and effective tool for further vibration analysis for the landing gear.
文摘This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.
文摘Supplementary annotations on special forms 1to 4, discussion on the general characteristics of K(t) and K(t, t), and analyses on two noticeable limits are presented in this part. It is demonstrated that strong and weak parabolic transforms can be employed to change the standard form of a multi-variable indeterminate form into xmK type, hence to derive the standard formulae of the limit and the differential.
基金supported by Iron Ore Research Center of Yazd University
文摘Uncertainty on the geological contacts and the block volumes of the models along boundaries is often a major part of the global uncertainty of reserve estimation.This work introduces a geostatistical technique that has been developed and tested in an iron ore deposit at Bafq mining district,in central Iran,and that,based on a probability criterion,helps to objectively model the geometry of this iron ore deposit.The main problem in reserve estimation of this ore body is its geometrical modeling and uncertainty in geological boundaries.This work deals with the geostatistical method of multiple indicator kriging,which is used to determine the real boundaries of ore body in different categories.This approach has potential to improve project performance and decrease operational risk.For this purpose,the ore body is separated into two categories including rich iron zone(w(Fe)>45%)and poor iron zone(20%<w(Fe)<45%).It significantly benefits to decrease the risk of reserve evaluation in the deposit.This case study also highlights the value of multiple indicator kriging as a tool for estimates the position of grade boundaries within the deposit.Comparison of the resultant probability maps with the real ore/waste contacts on the extracted levels shows that the first indicator model could separate the whole ore body(poor plus rich)from the waste zone by probability of more than 0.35,which concludes the total reserve of 53 million tons.The second indicator model applied to separate the rich and poor domains and the results show that the blocks with the estimated probability of equal to or more than 0.4 lay within the rich ore zone consisting of 15.8 million tons reserve.
文摘The paper analyzed characters of complicated system and discussed the reason of comprehensive evaluation, realization of flexible comprehensive evaluation was researched from prospect of dynamic measure selection of evaluation, balance of functionality and harmony, uncertainty factor. In the end, multistage flexible comprehensive evaluation of complicated system was applied to performance evaluation of firm.
文摘The author studies the effect of uncertain conductivity on the electroencephalography (EEG) forward problem. A three-layer spherical head model with different and random layer conductivities is considered. Polynomial Chaos (PC) is used to model the randomness. The author performs a sensitivity and correlation analysis of EEG sensors influenced by uncertain conductivity. The author addressed the sensitivity analysis at three stages: dipole location and moment averaged out, only the dipole moment averaged out, and both fixed. On average, the author observes the least influenced electrodes along the great longitudinal fissure. Also, sensors located closer to a dipole source, are of greater influence to a change in conductivity. The highly influenced sensors were on average located temporal. This was also the case in the correlation analysis. Sensors in the temporal parts of the brain are highly correlated. Whereas the sensors in the occipital and lower frontal region, though they are close together, are not so highly correlated as in the temporal regions. This study clearly shows that intrinsic sensor correlation exists, and therefore cannot be discarded, especially in the inverse problem. In the latter it makes it possible not to specify the conductivities. It also offers an easy but rigorous modeling of the stochastic propagation of uncertain conductivity to sensorial potentials (e.g., making it suited for research on optimal placing of these sensors).
基金supported by the National Natural Science Foundation of China(Grant Nos.41405083 and 91437220)the Natural Science Foundation of Hunan Province,China(Grant No.2015JJ3098)+1 种基金the Key Research Program of Frontier Sciences,CAS(QYZDY-SSW-DQC012)the Fund Project for The Education Department of Hunan Province(Grant No.16A234)
文摘The ability to estimate terrestrial water storage(TWS)is essential for monitoring hydrological extremes(e.g.,droughts and floods)and predicting future changes in the hydrological cycle.However,inadequacies in model physics and parameters,as well as uncertainties in meteorological forcing data,commonly limit the ability of land surface models(LSMs)to accurately simulate TWS.In this study,the authors show how simulations of TWS anomalies(TWSAs)from multiple meteorological forcings and multiple LSMs can be combined in a Bayesian model averaging(BMA)ensemble approach to improve monitoring and predictions.Simulations using three forcing datasets and two LSMs were conducted over China's Mainland for the period 1979–2008.All the simulations showed good temporal correlations with satellite observations from the Gravity Recovery and Climate Experiment during 2004–08.The correlation coefficient ranged between 0.5 and 0.8 in the humid regions(e.g.,the Yangtze river basin,Huaihe basin,and Zhujiang basin),but was much lower in the arid regions(e.g.,the Heihe basin and Tarim river basin).The BMA ensemble approach performed better than all individual member simulations.It captured the spatial distribution and temporal variations of TWSAs over China's Mainland and the eight major river basins very well;plus,it showed the highest R value(>0.5)over most basins and the lowest root-mean-square error value(<40 mm)in all basins of China.The good performance of the BMA ensemble approach shows that it is a promising way to reproduce long-term,high-resolution spatial and temporal TWSA data.
基金Supported in part by the NSFC (No.60934009,60874105)the ZJNSF (Y1080422, R106745)NCET (08-0345)
文摘The more diverse the ways and means of information acquisition are,the more complex and various the types of information are. The qualities of available information are usually uncertain,vague,imprecise,incomplete,and so on. However,the information is modeled and fused traditionally in particular,name some of the known theories: evidential,fuzzy sets,possibilistic,rough sets or conditional events,etc. For several years,researchers have explored the unification of theories enabling the fusion of multisource information and have finally considered random set theory as a powerful mathematical tool. This paper attempts to overall review the close relationships between random set theory and other theories,and introduce recent research results which present how different types of information can be dealt with in this unified framework. Finally,some possible future directions are discussed.
基金supported by the Open Fund for Graduate Innovation Base of Nanjing University of Aeronautics and Astronautics(No. kfjj20190726)。
文摘The flight departure process is affected by various uncertain factors,such as flight delays,scheduling delays and taxi time etc. A reliable and robust departure sequence is very important to the safe and efficient operation for airports. An optimal scheduling model for multi-runway departure considering the arrival aircraft crossing departure runway is developed. A genetic algorithm encoding flight numbers is designed to find a near-optimal solution. After that,further establish a multi-objective dynamic scheduling model and design a hybrid algorithm to solve it,and compare and analyze the results of the two models. A quantitative analysis of departure time based on the kernel density estimation is performed,and Monte Carlo simulations are carried out to explore the impact of flight departure time’s uncertainty on departure scheduling. The results based on historical data from Guangzhou Baiyun Airport are presented,showing the advantage of the proposed model and algorithm.
基金National Natural Science Foundation of China (No.60674088)
文摘This paper offeres an exact study on the robust stability of a kind of combined integrating control system, and the robust stability belongs to the analysis of a kind of quasi-polynomial with two independent time delays. The parameters of stable space under time delay uncertainty are fixed after Rekasius transformation, and then a new cluster treatment of characteristic roots (CTCR) procedure is adopted to determine the stable space. By this strategy we find that the unstable space is not continuous and both Karitonov vertices theory and Edge theory are unable to be extended to quasi-polynomial under time delay uncertainty.
文摘The report examines the evolution of computers from digital analogs through non-yon Neumann machines to quantum computers, which are also digital analogs. In the 60 years of digital analogs successfully developed at the Institute of Electromechanics of the USSR in Leningrad. An important stage in the development of non-classical multiprocessor machine performance and reliability has been the development of recursive machines, which was carried out at the Institute of Cybernetics led V.M.Glushkov and the Leningrad Institute of Aviation Instrumentation. The general approach to the synthesis is carried out through linguo- combinatorial modeling with structured uncertainty.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.61104097,61321002,61120106010,61522303,U1509215Program for Changjiang Scholars and Innovative Research Team in University(IRT1208)+2 种基金ChangJiang Scholars Program,Beijing Outstanding Ph.D.Program Mentor Grant(20131000704)Program for New Century Excellent Talents in University(NCET-13-0045)Beijing Higher Education Young Elite Teacher Project
文摘In this paper, the leader-following consensus for discrete-time nmlti-agent systems with parameter uncertainties is investigated based on the event-triggered strategy. And the parameter un- certainty is assmned to be norm-bounded. A consensus protocol is designed based on the event-triggered strategy to make the multi-agent systems achieve consensus without continuous communication among agents. Each agent only needs to observe its own state to determine its own triggering instants under the triggering function in this paper. In addition, a sufficient condition for the existence of the event- triggered consensus protocol is derived and presented in terms of the linear matrix inequality. Finally, a numerical example is given to illustrate to efficiency of the event-triggered consensus protocol proposed in this paper.
文摘This paper is concerned with the problem of robust H∞ filtering for linear discrete-time systems with multiple state delays and polytopic uncertain parameters. Attention is focused on the design of full-order, reduced-order and zeroth-order robust H∞ filters on the basis of a recently published parameter-dependent Lyapunov stability result. Sufficient conditions for the existence of such filters are formulated in terms of linear matrix inequalities, upon which admissible filters can be obtained from convex optimization problems. The proposed methodology has been shown, via a numerical example, to be much less conservative than previous filter design methods in the quadratic framework.
基金supported by the National Natural Science Foundation of China(Grant No.11602012)the 111 Project(Grant No.B07009)+1 种基金the Defense Industrial Technology Development Program(Grant No.JCKY2016601B001)and the China Postdoctoral Science Foundation(Grant No.2016M591038)
文摘A Newton iteration-based interval uncertainty analysis method(NI-IUAM) is proposed to analyze the propagating effect of interval uncertainty in multidisciplinary systems. NI-IUAM decomposes one multidisciplinary system into single disciplines and utilizes a Newton iteration equation to obtain the upper and lower bounds of coupled state variables at each iterative step.NI-IUAM only needs to determine the bounds of uncertain parameters and does not require specific distribution formats. In this way, NI-IUAM may greatly reduce the necessity for raw data. In addition, NI-IUAM can accelerate the convergence process as a result of the super-linear convergence of Newton iteration. The applicability of the proposed method is discussed, in particular that solutions obtained in each discipline must be compatible in multidisciplinary systems. The validity and efficiency of NI-IUAM is demonstrated by both numerical and engineering examples.