期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于变因子加权学习与邻代维度交叉策略的改进CSA算法 被引量:19
1
作者 赵世杰 高雷阜 +1 位作者 于冬梅 徒君 《电子学报》 EI CAS CSCD 北大核心 2019年第1期40-48,共9页
针对乌鸦搜索算法(CSA)优化高维问题时存在寻优精度低、局部极值逃逸能力弱等问题,提出一种耦合多个体变因子加权学习机制与最优个体邻代维度交叉策略的改进乌鸦搜索算法(ICSA).该算法随迭代进程动态修正模型控制参数(感知概率和飞行长... 针对乌鸦搜索算法(CSA)优化高维问题时存在寻优精度低、局部极值逃逸能力弱等问题,提出一种耦合多个体变因子加权学习机制与最优个体邻代维度交叉策略的改进乌鸦搜索算法(ICSA).该算法随迭代进程动态修正模型控制参数(感知概率和飞行长度),利用多个体的变因子加权学习机制保证子代个体同时继承跟随乌鸦与上代最优个体的位置信息以避免单个体继承的过快种群同化并减小陷入局部极值的风险;同时构建历史最优个体的邻代维度交叉策略,并按维度绝对差异大的优先替换原则更新最优个体位置,以保留历代最优维度信息并提高算法的局部极值逃逸能力.数值实验结果分别验证了模型参数对CSA算法性能的一定影响,加权学习因子不同递变形式对ICSA算法性能改善的有效性与差异性以及改进算法的优越寻优性能. 展开更多
关键词 智能优化算法 乌鸦搜索算法 因子加权学习机制 邻代维度交叉策略 基准测试函数
下载PDF
基于改进乌鸦搜索算法的极限学习机分类方法 被引量:2
2
作者 霍闪闪 苏兵 +1 位作者 王章权 孙萍 《计算机仿真》 北大核心 2023年第8期370-375,487,共7页
针对极限学习机(ELM)输入权重和阈值随机生成导致模型泛化性能低下的问题,提出一种改进的乌鸦搜索优化算法训练ELM的方法,利用改进的乌鸦搜索算法优化ELM模型,通过生成最佳输入权重和阈值提高预测结果准确率,降低ELM模型训练误差。为了... 针对极限学习机(ELM)输入权重和阈值随机生成导致模型泛化性能低下的问题,提出一种改进的乌鸦搜索优化算法训练ELM的方法,利用改进的乌鸦搜索算法优化ELM模型,通过生成最佳输入权重和阈值提高预测结果准确率,降低ELM模型训练误差。为了评估所提算法的性能,在UCI经典分类数据集上进行实验验证。实验结果表明,改进算法与其它智能优化算法相比,在50次运算中的标准差平均降低了62%,收敛速度平均提高了68%,表明所提算法具有更好的准确率、泛化性能和收敛速度。 展开更多
关键词 极限学习 乌鸦搜索算法 莱维飞行搜索 多个体变因子加权学习 邻代维度交叉
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部