期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
多个函数多介值的微分中值定理及其应用
1
作者 杨丽英 赵新平 吕雄 《教育教学论坛》 2020年第20期295-296,共2页
基于Rolle定理、Lagrange中值定理和Cauchy中值定理,从多个函数的角度出发,对微分中值定理进行推广,给出了关于三个函数的微分中值定理,得到了多个函数多介值的微分中值定理的新形式,拓展了微分中值定理的应用范围。
关键词 微分中值定理 多个函数 多介值
下载PDF
关于微分中值定理的探讨及推广 被引量:2
2
作者 张勇 《甘肃高师学报》 2009年第2期86-87,共2页
首先对一般证法中引入的辅助函数进行讨论,提示其实质,并对微分中值定理加以推广.
关键词 分析法 辅助函数 多个函数的中值定理
下载PDF
On the Number of Limit Cycles in Small Perturbations of a Piecewise Linear Hamiltonian System with a Heteroclinic Loop 被引量:3
3
作者 Feng LIANG Maoan HAN 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2016年第2期267-280,共14页
In this paper, the authors consider limit cycle bifurcations for a kind of nonsmooth polynomial differential systems by perturbing a piecewise linear Hamiltonian system with a center at the origin and a heteroclinic l... In this paper, the authors consider limit cycle bifurcations for a kind of nonsmooth polynomial differential systems by perturbing a piecewise linear Hamiltonian system with a center at the origin and a heteroclinic loop around the origin. When the degree of perturbing polynomial terms is n(n ≥ 1), it is obtained that n limit cycles can appear near the origin and the heteroclinic loop respectively by using the first Melnikov function of piecewise near-Hamiltonian systems, and that there are at most n + [(n+1)/2] limit cycles bifurcating from the periodic annulus between the center and the heteroclinic loop up to the first order in ε. Especially, for n = 1, 2, 3 and 4, a precise result on the maximal number of zeros of the first Melnikov function is derived. 展开更多
关键词 Limit cycle Heteroclinic loop Melnikov function Chebyshev system Bifurcation Piecewise smooth system
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部