期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合XGBoost和Multi-GRU的数据中心服务器能耗优化算法
被引量:
6
1
作者
申明尧
韩萌
+2 位作者
杜诗语
孙蕊
张春砚
《计算机应用》
CSCD
北大核心
2022年第1期198-208,共11页
随着云计算技术的快速发展,数据中心的数量大幅增加,随之而来的能源消耗问题逐渐成为一个研究热点。针对服务器能耗优化问题,提出了一种融合极限梯度提升(XGBoost)和多个门控循环单元(Multi-GRU)的数据中心服务器能耗优化(ECOXG)算法。...
随着云计算技术的快速发展,数据中心的数量大幅增加,随之而来的能源消耗问题逐渐成为一个研究热点。针对服务器能耗优化问题,提出了一种融合极限梯度提升(XGBoost)和多个门控循环单元(Multi-GRU)的数据中心服务器能耗优化(ECOXG)算法。首先利用Linux终端监控命令和功耗仪收集服务器各部件的资源占用信息和能耗等数据,并对其进行数据预处理来得到资源利用率。其次将资源利用率串联构造成向量形式的时间序列,用其训练Multi-GRU负载预测模型,并根据预测结果对服务器进行模拟降频,以得到降频后的负载数据。然后将服务器的资源利用率与相同时刻的能耗数据相结合,并用其训练XGBoost能耗预测模型。最后将降频后的负载数据输入到训练后的XGBoost模型中,从而预测出降频后的服务器能耗。在6台物理服务器实际资源利用率数据上的实验表明,与卷积神经网络(CNN)、长短期记忆(LSTM)网络、CNN-GRU和CNN-LSTM模型相比,ECOXG算法在均方根误差(RMSE)上分别降低了50.9%、31.0%、32.7%、22.9%;同时,与LSTM、CNN-GRU和CNN-LSTM模型相比,ECOXG算法在训练时间上分别节省了43.2%、47.1%、59.9%。实验结果表明,ECOXG算法能够在服务器能耗预测和能耗优化方面提供一定的理论基础,且在准确性和运行效率方面明显优于对比算法。此外,模拟降频后的服务器能耗已明显低于真实能耗,且在服务器的利用率较低时降耗效果显著。
展开更多
关键词
数据中心
能耗优化
负载
极限梯度提升
多个门控循环单元
下载PDF
职称材料
题名
融合XGBoost和Multi-GRU的数据中心服务器能耗优化算法
被引量:
6
1
作者
申明尧
韩萌
杜诗语
孙蕊
张春砚
机构
北方民族大学计算机科学与工程学院
出处
《计算机应用》
CSCD
北大核心
2022年第1期198-208,共11页
基金
国家自然科学基金资助项目(62062004)
宁夏自然科学基金资助项目(2020AAC03216)。
文摘
随着云计算技术的快速发展,数据中心的数量大幅增加,随之而来的能源消耗问题逐渐成为一个研究热点。针对服务器能耗优化问题,提出了一种融合极限梯度提升(XGBoost)和多个门控循环单元(Multi-GRU)的数据中心服务器能耗优化(ECOXG)算法。首先利用Linux终端监控命令和功耗仪收集服务器各部件的资源占用信息和能耗等数据,并对其进行数据预处理来得到资源利用率。其次将资源利用率串联构造成向量形式的时间序列,用其训练Multi-GRU负载预测模型,并根据预测结果对服务器进行模拟降频,以得到降频后的负载数据。然后将服务器的资源利用率与相同时刻的能耗数据相结合,并用其训练XGBoost能耗预测模型。最后将降频后的负载数据输入到训练后的XGBoost模型中,从而预测出降频后的服务器能耗。在6台物理服务器实际资源利用率数据上的实验表明,与卷积神经网络(CNN)、长短期记忆(LSTM)网络、CNN-GRU和CNN-LSTM模型相比,ECOXG算法在均方根误差(RMSE)上分别降低了50.9%、31.0%、32.7%、22.9%;同时,与LSTM、CNN-GRU和CNN-LSTM模型相比,ECOXG算法在训练时间上分别节省了43.2%、47.1%、59.9%。实验结果表明,ECOXG算法能够在服务器能耗预测和能耗优化方面提供一定的理论基础,且在准确性和运行效率方面明显优于对比算法。此外,模拟降频后的服务器能耗已明显低于真实能耗,且在服务器的利用率较低时降耗效果显著。
关键词
数据中心
能耗优化
负载
极限梯度提升
多个门控循环单元
Keywords
data center
energy consumption optimization
load
eXtreme Gradient Boosting(XGBoost)
Multiple Gated Recurrent Units(Multi-GRU)
分类号
TP391.9 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
融合XGBoost和Multi-GRU的数据中心服务器能耗优化算法
申明尧
韩萌
杜诗语
孙蕊
张春砚
《计算机应用》
CSCD
北大核心
2022
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部