Mobile multimedia streaming is an open topic in vehicular environment. Due to the high intermittent links, it has become a critical challenge to deliver high quality video streaming in vehicular networks. In this pape...Mobile multimedia streaming is an open topic in vehicular environment. Due to the high intermittent links, it has become a critical challenge to deliver high quality video streaming in vehicular networks. In this paper, we reform the Information Centric Networking (ICN) concept for multimedia delivery in urban vehicular networks. By leveraging the 1CN perspective, we highlight that vehicular peers can obtain multimedia chunks via the vehicle-to-cloud (V2C) approach to improve the delivery quality. Based on this, we propose a lightweight multipath selection strategy to guide the network system to adaptively adjust the forwarding means. Extensive simulations show that the proposed solution can optimize the utilization of network paths, lighten network loads as well as avoid wasting resources.展开更多
This study utilizes a time-precedence network technique to construct two models of multi-mode resource constrained project scheduling problem with discounted cash flows (MRCPSPDCF), individually including the progre...This study utilizes a time-precedence network technique to construct two models of multi-mode resource constrained project scheduling problem with discounted cash flows (MRCPSPDCF), individually including the progress payment (PP) and the payment at an equal time interval (ETI). The objective of each model is to maximize the net present value (NPV) for all cash flows in the project, subject to the related operational constraints. The models are characterized as NP-hard. A heuristic algorithm, coupled with two upper bound solutions, is proposed to efficiently solve the models and evaluate the heuristic algorithm performance which was not performed in past studies. The results show that the performance of proposed models and heuristic algorithm is good.展开更多
Payment for ecosystem services is a concept of environmental protection and method of environmental management that has "purchasing conservation" as a major feature and has grown around the world since the 1990 s. I...Payment for ecosystem services is a concept of environmental protection and method of environmental management that has "purchasing conservation" as a major feature and has grown around the world since the 1990 s. It is stressed by the school of environmental economics that as a voluntary mechanism of exchange between ecological service providers and demanders, payments for ecosystem services can help to increase inputs and improve efficiency. Ecological economics holds that the ecological system and the complexity of the policy environment restrict the functional space of market mechanisms. The negative influence of the objective of giving priority to efficiency on environmental protection and social fairness cannot be neglected; therefore, the exchange mechanism is just one type of eco-compensation models. Here, we posit that payments for ecosystem services is a good tool for environmental protection and increases inputs and efficiency. Although payment for ecosystem services is confronted with challenges in application, it is playing an increasingly important role in the field of ecological services with a relatively high degree of commodification. Payments for ecosystem services can also increase the cost effectiveness of publicly managed environmental projects with the cooperation of other policy tools.展开更多
Porous silicon nanoparficles (pSiNPs) are a promising nanocarrier system for drug delivery owing to their biocompatibility, biodegradability, and non-inflammatory nature. Here, we investigate the fabrication and cha...Porous silicon nanoparficles (pSiNPs) are a promising nanocarrier system for drug delivery owing to their biocompatibility, biodegradability, and non-inflammatory nature. Here, we investigate the fabrication and characterization of thermally hydrocarbonized pSiNPs (THCpSiNPs) and chitosan-coated THCpSiNPs for therapeutic oligonucleotide delivery. Chitosan coating after oligonucleotide loading significantly improves sustained oligonucleotide release and suppresses burst release effects. Moreover, cellular uptake, endocytosis, and cytotoxicity of oligonucleotide-loaded THCpSiNPs have been evaluated in vitro. Standard cell viability assays demonstrate that cells incubated with the NPs at a concentration of 0.1 mg/mL are 95% viable. In addition, chitosan coating significantly enhances the uptake of oligonucleotide-loaded THCpSiNPs across the cell membrane. Moreover, histopathological analysis of liver, kidney, spleen, and skin tissue collected from mice receiving NPs further demonstrates the biocompatible and non-inflammatory properties of the NPs as a gene delivery vehicle for intravenous and subcutaneous administration in vivo. Taken together, these results suggest that THCpSiNPs provide a versatile platform that could be used as efficient vehicles for the intracellular delivery of oligonucleotides for gene therapy.展开更多
Magnetic nanopartides have been used as drug delivery vehicles against a number of cancer cells. Most of these theranostic formulations have used solid iron oxide nanoparticles (SIONPs) loaded with chemotherapeutics...Magnetic nanopartides have been used as drug delivery vehicles against a number of cancer cells. Most of these theranostic formulations have used solid iron oxide nanoparticles (SIONPs) loaded with chemotherapeutics as nano-carrier formulation for both magnetic resonance imaging (MRI) and cancer therapy. In this study, we applied the dopamine-plus-human serum albumin (HSA) method to modify hollow iron oxide nanoparticles (HIONPs) and encapsuated doxorubicin (DOX) within the hollow porous structure of the nano-carrier. The new delivery system can load more drug than solid iron oxide nanoparticles of the same core size using the same coating strategy. The HIONPs-DOX formulation also has a pH-dependent drug release behaviour. Compared with free DOX, the HIONPs-DOX were more effectively uptaken by the multidrug resistant OVCAR8- ADR cells and consequently more potent in killing drug resistant cancer cells. MRI phantom and cell studies also showed that the HIONPs-DOX can decrease the T2 MRI signal intensity and can be used as a MR/contrast agent while acting as a drug delivery vehicle. For the first time, the dual application of chemo drug transport and MR imaging using the HIONPs-DOX formulation was achieved against both DOX-sensitive and DOX-resistant cancer cells.展开更多
基金partially supported by the Fundamental Research Funds for the Central Universities under Grant No.2015JBM009the National Natural Science Foundation of China(NSFC) under Grant 61602030 U1404611,61301081+1 种基金the Project Funded by China Postdoctoral Science Foundation under Grant No.2016T90031,2015M570028 and 2015M580970the Program for Science & Technology Innovation Talents in the University of Henan Province under Grant No.16HASTIT035
文摘Mobile multimedia streaming is an open topic in vehicular environment. Due to the high intermittent links, it has become a critical challenge to deliver high quality video streaming in vehicular networks. In this paper, we reform the Information Centric Networking (ICN) concept for multimedia delivery in urban vehicular networks. By leveraging the 1CN perspective, we highlight that vehicular peers can obtain multimedia chunks via the vehicle-to-cloud (V2C) approach to improve the delivery quality. Based on this, we propose a lightweight multipath selection strategy to guide the network system to adaptively adjust the forwarding means. Extensive simulations show that the proposed solution can optimize the utilization of network paths, lighten network loads as well as avoid wasting resources.
文摘This study utilizes a time-precedence network technique to construct two models of multi-mode resource constrained project scheduling problem with discounted cash flows (MRCPSPDCF), individually including the progress payment (PP) and the payment at an equal time interval (ETI). The objective of each model is to maximize the net present value (NPV) for all cash flows in the project, subject to the related operational constraints. The models are characterized as NP-hard. A heuristic algorithm, coupled with two upper bound solutions, is proposed to efficiently solve the models and evaluate the heuristic algorithm performance which was not performed in past studies. The results show that the performance of proposed models and heuristic algorithm is good.
基金the National Science and Technology Support Program(2013BAC03B05)Monographic study of Graduate School of Chinese Academy of Social Sciences"Research of Eco-Compensation Experience in Developed Countries"
文摘Payment for ecosystem services is a concept of environmental protection and method of environmental management that has "purchasing conservation" as a major feature and has grown around the world since the 1990 s. It is stressed by the school of environmental economics that as a voluntary mechanism of exchange between ecological service providers and demanders, payments for ecosystem services can help to increase inputs and improve efficiency. Ecological economics holds that the ecological system and the complexity of the policy environment restrict the functional space of market mechanisms. The negative influence of the objective of giving priority to efficiency on environmental protection and social fairness cannot be neglected; therefore, the exchange mechanism is just one type of eco-compensation models. Here, we posit that payments for ecosystem services is a good tool for environmental protection and increases inputs and efficiency. Although payment for ecosystem services is confronted with challenges in application, it is playing an increasingly important role in the field of ecological services with a relatively high degree of commodification. Payments for ecosystem services can also increase the cost effectiveness of publicly managed environmental projects with the cooperation of other policy tools.
文摘Porous silicon nanoparficles (pSiNPs) are a promising nanocarrier system for drug delivery owing to their biocompatibility, biodegradability, and non-inflammatory nature. Here, we investigate the fabrication and characterization of thermally hydrocarbonized pSiNPs (THCpSiNPs) and chitosan-coated THCpSiNPs for therapeutic oligonucleotide delivery. Chitosan coating after oligonucleotide loading significantly improves sustained oligonucleotide release and suppresses burst release effects. Moreover, cellular uptake, endocytosis, and cytotoxicity of oligonucleotide-loaded THCpSiNPs have been evaluated in vitro. Standard cell viability assays demonstrate that cells incubated with the NPs at a concentration of 0.1 mg/mL are 95% viable. In addition, chitosan coating significantly enhances the uptake of oligonucleotide-loaded THCpSiNPs across the cell membrane. Moreover, histopathological analysis of liver, kidney, spleen, and skin tissue collected from mice receiving NPs further demonstrates the biocompatible and non-inflammatory properties of the NPs as a gene delivery vehicle for intravenous and subcutaneous administration in vivo. Taken together, these results suggest that THCpSiNPs provide a versatile platform that could be used as efficient vehicles for the intracellular delivery of oligonucleotides for gene therapy.
基金Acknowledgements This research was supported in part by the National Basic Research Program of China (973 Program, Nos. 2013CB733802 and 2010CB934602) the National Science Foundation of China (NSFC, Nos. 81101101, 81201086, 81201129, 81201190, 51273165, 51172005 and 81028009)+1 种基金 the Chinese Academy of Sciences Professorship for Senior International Scientists (No. 2011T2J06) and the Intramural Research Program (IRP) of the National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH). R. X. is partially supported by the China Scholarship Council.
文摘Magnetic nanopartides have been used as drug delivery vehicles against a number of cancer cells. Most of these theranostic formulations have used solid iron oxide nanoparticles (SIONPs) loaded with chemotherapeutics as nano-carrier formulation for both magnetic resonance imaging (MRI) and cancer therapy. In this study, we applied the dopamine-plus-human serum albumin (HSA) method to modify hollow iron oxide nanoparticles (HIONPs) and encapsuated doxorubicin (DOX) within the hollow porous structure of the nano-carrier. The new delivery system can load more drug than solid iron oxide nanoparticles of the same core size using the same coating strategy. The HIONPs-DOX formulation also has a pH-dependent drug release behaviour. Compared with free DOX, the HIONPs-DOX were more effectively uptaken by the multidrug resistant OVCAR8- ADR cells and consequently more potent in killing drug resistant cancer cells. MRI phantom and cell studies also showed that the HIONPs-DOX can decrease the T2 MRI signal intensity and can be used as a MR/contrast agent while acting as a drug delivery vehicle. For the first time, the dual application of chemo drug transport and MR imaging using the HIONPs-DOX formulation was achieved against both DOX-sensitive and DOX-resistant cancer cells.