期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合电网运行场景聚类的多任务深度强化学习优化调度 被引量:9
1
作者 邓柏荣 陈俊斌 +4 位作者 丁巧宜 潘振宁 余涛 王克英 侯佳萱 《电网技术》 EI CSCD 北大核心 2023年第3期978-987,共10页
“双碳”目标和新型电力系统建设背景下,新能源的高渗透率接入导致电力系统随机性显著增大、运行方式的分布复杂多样,传统单任务深度强化学习难以自适应源荷两侧的高随机性,调度决策难以满足新型电力系统对风光消纳、功率平衡需求。为此... “双碳”目标和新型电力系统建设背景下,新能源的高渗透率接入导致电力系统随机性显著增大、运行方式的分布复杂多样,传统单任务深度强化学习难以自适应源荷两侧的高随机性,调度决策难以满足新型电力系统对风光消纳、功率平衡需求。为此,该文提出融合电网运行场景聚类的多任务深度强化学习优化调度方法。该方法离线训练时利用空间聚类和决策树辨识海量调度运行数据的典型运行场景与重要特征,并构建甄别场景类别的多层感知机分类器;再依据场景类别建立和划分融合聚类多任务深度强化学习模型,从数据源到状态动作设计差异化训练各子任务学习器与模型;在线决策时利用分类器辨识有限运行数据的场景类别,调用模型快速求解实时调度任务,实现高随机场景下的多任务快速迁移学习,保证电力系统优化调度决策的最优性。该文通过算例验证了该方法的解的可行性与经济性。实验结果表明,融合电网运行场景聚类的多任务深度强化学习优化调度算法较单任务算法能够明显提升调度决策经济效益。 展开更多
关键词 数据驱动模式 场景聚类 多任务深度强化学习 迁移学习 优化调度
下载PDF
Deep reinforcement learning-based optimization of lightweight task offloading for multi-user mobile edge computing 被引量:1
2
作者 ZHANG Wenxian DU Yongwen 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第4期489-500,共12页
To improve the quality of computation experience for mobile devices,mobile edge computing(MEC)is a promising paradigm by providing computing capabilities in close proximity within a sliced radio access network,which s... To improve the quality of computation experience for mobile devices,mobile edge computing(MEC)is a promising paradigm by providing computing capabilities in close proximity within a sliced radio access network,which supports both traditional communication and MEC services.However,this kind of intensive computing problem is a high dimensional NP hard problem,and some machine learning methods do not have a good effect on solving this problem.In this paper,the Markov decision process model is established to find the excellent task offloading scheme,which maximizes the long-term utility performance,so as to make the best offloading decision according to the queue state,energy queue state and channel quality between mobile users and BS.In order to explore the curse of high dimension in state space,a candidate network is proposed based on edge computing optimize offloading(ECOO)algorithm with the application of deep deterministic policy gradient algorithm.Through simulation experiments,it is proved that the ECOO algorithm is superior to some deep reinforcement learning algorithms in terms of energy consumption and time delay.So the ECOO is good at dealing with high dimensional problems. 展开更多
关键词 multi-user mobile edge computing task offloading deep reinforcement learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部