The problem of allocating a number of exploration tasks to a team of mobile robots in dynamic environments was studied. The team mission is to visit several distributed targets. The path cost of target is proportional...The problem of allocating a number of exploration tasks to a team of mobile robots in dynamic environments was studied. The team mission is to visit several distributed targets. The path cost of target is proportional to the distance that a robot has to move to visit the target. The team objective is to minimize the average path cost of target over all targets. Finding an optimal allocation is strongly NP-hard. The proposed algorithm can produce a near-optimal solution to it. The allocation can be cast in terms of a multi-round single-item auction by which robots bid on targets. In each auction round, one target is assigned to a robot that produces the lowest path cost of the target. The allocated targets form a forest where each tree corresponds a robot’s exploring targets set. Each robot constructs an exploring path through depth-first search in its target tree. The time complexity of the proposed algorithm is polynomial. Simulation experiments show that the allocating method is valid.展开更多
基金Project(A1420060159) supported by the National Basic Research of China projects(60234030 60404021) supported bythe National Natural Science Foundation of China
文摘The problem of allocating a number of exploration tasks to a team of mobile robots in dynamic environments was studied. The team mission is to visit several distributed targets. The path cost of target is proportional to the distance that a robot has to move to visit the target. The team objective is to minimize the average path cost of target over all targets. Finding an optimal allocation is strongly NP-hard. The proposed algorithm can produce a near-optimal solution to it. The allocation can be cast in terms of a multi-round single-item auction by which robots bid on targets. In each auction round, one target is assigned to a robot that produces the lowest path cost of the target. The allocated targets form a forest where each tree corresponds a robot’s exploring targets set. Each robot constructs an exploring path through depth-first search in its target tree. The time complexity of the proposed algorithm is polynomial. Simulation experiments show that the allocating method is valid.