期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
从龙粳8号的选育看利用综合育种技术实现多优集成 被引量:8
1
作者 孙岩松 潘国君 +1 位作者 吕彬 张淑华 《作物品种资源》 1998年第4期6-8,共3页
1982年选用适宜寒地生态条件的骨干亲本松前和雄基9号,进行第一次杂交后,选出早熟优质的稳定品系龙交82133做为中间亲本材料。为进一步导入抗稻瘟病基因源,1987年选用高度抗病的桥梁亲本N193-2(城堡2号/S5... 1982年选用适宜寒地生态条件的骨干亲本松前和雄基9号,进行第一次杂交后,选出早熟优质的稳定品系龙交82133做为中间亲本材料。为进一步导入抗稻瘟病基因源,1987年选用高度抗病的桥梁亲本N193-2(城堡2号/S56)进行第二次杂交。1988年以F1作花培,经过12年连续选择、5年系统培育、特性鉴定和中间试验,运用综合育种技术育成了集早熟、优质抗病、耐冷、丰产、适应性广于一体的寒地早粳多优集成新品种龙粳8号。 展开更多
关键词 龙粳8号 杂交 花药培养 多优集成 水稻 选育
下载PDF
选育水稻多优集成新品种的重要途径和方法
2
作者 曹静明 吴长明 付秀林 《吉林农业科学》 CSCD 1999年第4期12-15,共4页
采用理想株型、丰产、优质、抗病、抗冷性较好的青系96 为母本与籼粳交中间类型的丰产抗病BG902 杂交,利用籼粳杂种优势和地理远缘优势把高产、优质、抗病、抗冷聚集在一起,在其F3 不稳定株系中选择高产、优质、多抗株系再与株型好、丰... 采用理想株型、丰产、优质、抗病、抗冷性较好的青系96 为母本与籼粳交中间类型的丰产抗病BG902 杂交,利用籼粳杂种优势和地理远缘优势把高产、优质、抗病、抗冷聚集在一起,在其F3 不稳定株系中选择高产、优质、多抗株系再与株型好、丰产、优质、抗冷的下北杂交,经过多代系统选育、特性鉴定和中间试验的综合育种技术,多学科协作,育成了集高产、优质、抗病、抗冷和广泛适应性于一体的多优集成新品种超产1 号,这是我省水稻育种史上的一次飞跃。 展开更多
关键词 杂种 综合育种技术 多优集成 水稻
下载PDF
从绥粳5号的育成探索水稻育种多优集成的可行性 被引量:1
3
作者 刘宝海 宋福金 高存启 《黑龙江农业科学》 2003年第5期25-26,共2页
用丰产、抗病、优质的藤系 137为母本与抗盐碱、耐冷凉、抗倒伏、熟期早的绥粳 1号为父本进行杂交 ,聚集亲本优良性状 ,去其不良性状 ,经过田间系统选育、特性鉴定与室内考种 ,育成了集丰产、优质、抗盐碱、耐冷凉、抗病、抗倒伏、早熟... 用丰产、抗病、优质的藤系 137为母本与抗盐碱、耐冷凉、抗倒伏、熟期早的绥粳 1号为父本进行杂交 ,聚集亲本优良性状 ,去其不良性状 ,经过田间系统选育、特性鉴定与室内考种 ,育成了集丰产、优质、抗盐碱、耐冷凉、抗病、抗倒伏、早熟于一体的多优集成新品种绥粳 5号。 展开更多
关键词 绥粳5号 水稻 育种 多优集成 可行性 抗盐碱 耐冷凉 选育 品种
下载PDF
优质高产抗病水稻品种松粳6号特性分析 被引量:3
4
作者 闫平 牟凤臣 +5 位作者 武洪涛 周劲松 王彦军 付建军 赵淑琴 侯学富 《黑龙江农业科学》 2006年第4期15-17,共3页
通过对松粳6号亲本的系谱分析,米质分析,产量鉴定、全省区域试验和生产试验的产量结果分析,以及抗稻瘟病性分析表明,松粳6号具有优质、高产、抗稻瘟病性强等特性,是水稻育种的重要种质资源,是目前水稻生产中多优集成的水稻新品种。依据... 通过对松粳6号亲本的系谱分析,米质分析,产量鉴定、全省区域试验和生产试验的产量结果分析,以及抗稻瘟病性分析表明,松粳6号具有优质、高产、抗稻瘟病性强等特性,是水稻育种的重要种质资源,是目前水稻生产中多优集成的水稻新品种。依据稻瘟病发病机理提出松粳6号要同更多的具有其他抗稻瘟病基因的品种搭配应用,使其具有更长的应用时期。 展开更多
关键词 松粳6号 多优集成 种质资源 稻瘟病 水稻
下载PDF
Multi-objective integrated optimization based on evolutionary strategy with a dynamic weighting schedule 被引量:2
5
作者 傅武军 朱昌明 叶庆泰 《Journal of Southeast University(English Edition)》 EI CAS 2006年第2期204-207,共4页
The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system perf... The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system performance and control cost are defined by H2 or H∞ norms. During this optimization process, the weights are varying with the increasing generation instead of fixed values. The proposed strategy together with the linear matrix inequality (LMI) or the Riccati controller design method can find a series of uniformly distributed nondominated solutions in a single run. Therefore, this method can greatly reduce the computation intensity of the integrated optimization problem compared with the weight-based single objective genetic algorithm. Active automotive suspension is adopted as an example to illustrate the effectiveness of the proposed method. 展开更多
关键词 integrated design multi-objective optimization evolutionary strategy dynamic weighting schedule suspension system
下载PDF
Rotation forest based on multimodal genetic algorithm 被引量:2
6
作者 XU Zhe NI Wei-chen JI Yue-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第6期1747-1764,共18页
In machine learning,randomness is a crucial factor in the success of ensemble learning,and it can be injected into tree-based ensembles by rotating the feature space.However,it is a common practice to rotate the featu... In machine learning,randomness is a crucial factor in the success of ensemble learning,and it can be injected into tree-based ensembles by rotating the feature space.However,it is a common practice to rotate the feature space randomly.Thus,a large number of trees are required to ensure the performance of the ensemble model.This random rotation method is theoretically feasible,but it requires massive computing resources,potentially restricting its applications.A multimodal genetic algorithm based rotation forest(MGARF)algorithm is proposed in this paper to solve this problem.It is a tree-based ensemble learning algorithm for classification,taking advantage of the characteristic of trees to inject randomness by feature rotation.However,this algorithm attempts to select a subset of more diverse and accurate base learners using the multimodal optimization method.The classification accuracy of the proposed MGARF algorithm was evaluated by comparing it with the original random forest and random rotation ensemble methods on 23 UCI classification datasets.Experimental results show that the MGARF method outperforms the other methods,and the number of base learners in MGARF models is much fewer. 展开更多
关键词 ensemble learning decision tree multimodal optimization genetic algorithm
下载PDF
Waste Minimization Through Process Integration and Multi-objective Optimization 被引量:4
7
作者 高瑛 石磊 姚平经 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第3期267-272,共6页
By avoiding or reducing the production of waste, waste minimization is an effective approach to solve the pollution problem in chemical industry. Process integration supported by multi-objective optimization provides ... By avoiding or reducing the production of waste, waste minimization is an effective approach to solve the pollution problem in chemical industry. Process integration supported by multi-objective optimization provides a framework for process design or process retrofit by simultaneously optimizing on the aspects of environment and economics. Multi-objective genetic algorithm is applied in this area as the solution approach for the multi-objective optimization problem. 展开更多
关键词 waste minimization process integration multi-objective optimization multi-objective genetic algo- rithm
下载PDF
Evolutionary Algorithm with Ensemble Classifier Surrogate Model for Expensive Multiobjective Optimization
8
作者 LAN Tian 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第S01期76-87,共12页
For many real-world multiobjective optimization problems,the evaluations of the objective functions are computationally expensive.Such problems are usually called expensive multiobjective optimization problems(EMOPs).... For many real-world multiobjective optimization problems,the evaluations of the objective functions are computationally expensive.Such problems are usually called expensive multiobjective optimization problems(EMOPs).One type of feasible approaches for EMOPs is to introduce the computationally efficient surrogates for reducing the number of function evaluations.Inspired from ensemble learning,this paper proposes a multiobjective evolutionary algorithm with an ensemble classifier(MOEA-EC)for EMOPs.More specifically,multiple decision tree models are used as an ensemble classifier for the pre-selection,which is be more helpful for further reducing the function evaluations of the solutions than using single inaccurate model.The extensive experimental studies have been conducted to verify the efficiency of MOEA-EC by comparing it with several advanced multiobjective expensive optimization algorithms.The experimental results show that MOEA-EC outperforms the compared algorithms. 展开更多
关键词 multiobjective evolutionary algorithm expensive multiobjective optimization ensemble classifier surrogate model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部