This paper presents a novel Autonomous Integrity Monitoring and Assurance (AIMA) scheme for integrity assurance of the GNSS-based train integrated positioning system. In this scheme, integrity assurance strategies a...This paper presents a novel Autonomous Integrity Monitoring and Assurance (AIMA) scheme for integrity assurance of the GNSS-based train integrated positioning system. In this scheme, integrity assurance strategies are combined with a three-stage hierarchical architecture, considering the coupling effects among sensor collection, sensor fusion and matching decision level in train integrated positioning. In sensor collecting stage, the AIMA scheme deals with sensor faults and failures with a PCA-based fault detection, diagnosis and isolation approach. In multi-sensor fusion stage, a novel cubature point H0o filter is presented to enhance the fault tolerance capability, and a hybrid approach is applied to indicating and monitoring the protection level of position estimation, concerning both the estimating covariance and measurement slopes. In map matching stage, hypothesis testing with specific test statistic is carried out to determine effectiveness of positioning results. Position calculation will be invalid with an alarm triggered if the specific integrity criterion is not satisfied in any stage. Since independent solutions are applied in AIMA, integrity assurance is closely coupled with information processing in train integrated positioning. Numerical results of the three cases correspond to the hierarchical architecture with field data and simulations are presented to illustrate features and applicability of the proposed AIMA scheme and specific solutions.展开更多
Graphene emerges as an ideal material for constructing high-performance strain sensors,due to its superior mechanical property and high conductivity.However,in the process of assembling graphene into macroscopic mater...Graphene emerges as an ideal material for constructing high-performance strain sensors,due to its superior mechanical property and high conductivity.However,in the process of assembling graphene into macroscopic materials,its conductivity decreases significantly.Also,tedious fabrication process hinders the application of graphene-based strain sensors.In this work,we report a freestanding graphene assembled film(GAF)with high conductivity((2.32±0.08)×105 S m-1).For the sensitive materials of strain sensors,it is higher than most of reported carbon nanotube and graphene materials.These advantages enable the GAF to be an ultra-low power consumption strain sensor for detecting airflow and vocal vibrations.The resistance of the GAF remains unchanged with increasing temperature(20-100℃),exhibiting a good thermal stability.Also,the GAF can be used as a strain sensor directly without any flexible substrates,which greatly simplifies the fabrication process in comparison with most reported strain sensors.Additionally,the GAF used as a pressure sensor with only^4.7μW power is investigated.This work provides a new direction for the preparation of advanced sensors with ultra-low power consumption,and the development of flexible and energy-saving electronic devices.展开更多
An all fiber magnetic field sensor with peanut-shape structure based on multimode fiber(MMF) is proposed and experimentally demonstrated. The sensing structure and magnetic fluid(MF) are both encapsulated in capillary...An all fiber magnetic field sensor with peanut-shape structure based on multimode fiber(MMF) is proposed and experimentally demonstrated. The sensing structure and magnetic fluid(MF) are both encapsulated in capillary, and the effective refractive index of MF is affected by surrounding magnetic field strength. The measurement of magnetic field is realized by observing the wavelength drift of interference peak. The transmission spectrum generated by Mach-Zehnder interferometer(MZI) includes core-core mode interference and core-cladding mode interference. Experimental results demonstrate that the core-cladding mode interference is sensitive to magnetic field, and the magnetic field sensitivity is 0.047 8 nm/mT. In addition, two kinds of interference dips are sensitive to temperature, and the sensitivities are 0.060 0 nm/°C and 0.052 6 nm/°C, respectively. So the simultaneous measurement of magnetic field strength and temperature can be achieved based on sensitivity matrix.展开更多
A multimode interference refractive index (KI) sensor based on the coreless fiber was numerically and experimentally demonstrated. Two identical single mode fibers (SMF) are spliced at both ends of a section of th...A multimode interference refractive index (KI) sensor based on the coreless fiber was numerically and experimentally demonstrated. Two identical single mode fibers (SMF) are spliced at both ends of a section of the coreless fiber which can he considered as the equivalent weakly guiding multimode fiber (MMF) with a step-index profile when the surrounding refractive index (SKI) is lower than that of the coreless fiber. Thus, it becomes the conventional single-mode multimode single-mode (SMS) fiber structure but with a larger core size. The output spectra will shift along with the changes in the SKI owing to the direct exposure of the coreless fiber. The output spectra under different SKIs were numerically studied, as well as the sensitivities with different lengths and diameters of the coreless fiber. The predication and calculation showed the good agreement with the experimental results. The proposed RI sensor proved to be feasible by verification experiments, and the relative error was merely 0.1% which occupied preferable sensing performance and practicability.展开更多
This study is devoted to the experimental validation of the multi-type sensor placement and response reconstruction method for structural health monitoring of long-span suspension bridges. The method for multi-type se...This study is devoted to the experimental validation of the multi-type sensor placement and response reconstruction method for structural health monitoring of long-span suspension bridges. The method for multi-type sensor placement and response reconstruction is briefly described. A test bed, comprising of a physical model and an updated finite element (P-E) model of a long-span suspension bridge is also concisely introduced. The proposed method is then applied to the test bed; the equation of motion of the test bed subject to ground motion, the objective function for sensor location optimization, the principles for mode selection and multi-type response reconstruction are established. A numerical study using the updated FE model is performed to select the sensor types, numbers, and locations. Subsequently, with the identified sensor locations and some practical considerations, fiber Bragg grating (FBG) sensors, laser displacement transducers, and accelerometers are installed on the physical bridge model. Finally, experimental investigations are conducted to validate the proposed method. The experimental results show that the reconstructed responses using the measured responses from the limited number of multitype sensors agree well with the actual bridge responses. The proposed method is validated to be feasible and effective for the monitoring of structural behavior of longspan suspension bridges.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 60634010, 60736047, 60870016)
文摘This paper presents a novel Autonomous Integrity Monitoring and Assurance (AIMA) scheme for integrity assurance of the GNSS-based train integrated positioning system. In this scheme, integrity assurance strategies are combined with a three-stage hierarchical architecture, considering the coupling effects among sensor collection, sensor fusion and matching decision level in train integrated positioning. In sensor collecting stage, the AIMA scheme deals with sensor faults and failures with a PCA-based fault detection, diagnosis and isolation approach. In multi-sensor fusion stage, a novel cubature point H0o filter is presented to enhance the fault tolerance capability, and a hybrid approach is applied to indicating and monitoring the protection level of position estimation, concerning both the estimating covariance and measurement slopes. In map matching stage, hypothesis testing with specific test statistic is carried out to determine effectiveness of positioning results. Position calculation will be invalid with an alarm triggered if the specific integrity criterion is not satisfied in any stage. Since independent solutions are applied in AIMA, integrity assurance is closely coupled with information processing in train integrated positioning. Numerical results of the three cases correspond to the hierarchical architecture with field data and simulations are presented to illustrate features and applicability of the proposed AIMA scheme and specific solutions.
基金the National Natural Science Foundation of China(51701146,51672204)the Fundamental Research Funds for the Central Universities(WUT:2017IB015)Foundation of National Key Laboratory on Electromagnetic Environment Effects(614220504030617)。
文摘Graphene emerges as an ideal material for constructing high-performance strain sensors,due to its superior mechanical property and high conductivity.However,in the process of assembling graphene into macroscopic materials,its conductivity decreases significantly.Also,tedious fabrication process hinders the application of graphene-based strain sensors.In this work,we report a freestanding graphene assembled film(GAF)with high conductivity((2.32±0.08)×105 S m-1).For the sensitive materials of strain sensors,it is higher than most of reported carbon nanotube and graphene materials.These advantages enable the GAF to be an ultra-low power consumption strain sensor for detecting airflow and vocal vibrations.The resistance of the GAF remains unchanged with increasing temperature(20-100℃),exhibiting a good thermal stability.Also,the GAF can be used as a strain sensor directly without any flexible substrates,which greatly simplifies the fabrication process in comparison with most reported strain sensors.Additionally,the GAF used as a pressure sensor with only^4.7μW power is investigated.This work provides a new direction for the preparation of advanced sensors with ultra-low power consumption,and the development of flexible and energy-saving electronic devices.
基金supported by the National High Technology Research and Development Program of China(No.2013AA014200)the National Natural Science Foundation of China(No.11444001)the Municipal Natural Science Foundation of Tianjin(No.14JCYBJC16500)
文摘An all fiber magnetic field sensor with peanut-shape structure based on multimode fiber(MMF) is proposed and experimentally demonstrated. The sensing structure and magnetic fluid(MF) are both encapsulated in capillary, and the effective refractive index of MF is affected by surrounding magnetic field strength. The measurement of magnetic field is realized by observing the wavelength drift of interference peak. The transmission spectrum generated by Mach-Zehnder interferometer(MZI) includes core-core mode interference and core-cladding mode interference. Experimental results demonstrate that the core-cladding mode interference is sensitive to magnetic field, and the magnetic field sensitivity is 0.047 8 nm/mT. In addition, two kinds of interference dips are sensitive to temperature, and the sensitivities are 0.060 0 nm/°C and 0.052 6 nm/°C, respectively. So the simultaneous measurement of magnetic field strength and temperature can be achieved based on sensitivity matrix.
文摘A multimode interference refractive index (KI) sensor based on the coreless fiber was numerically and experimentally demonstrated. Two identical single mode fibers (SMF) are spliced at both ends of a section of the coreless fiber which can he considered as the equivalent weakly guiding multimode fiber (MMF) with a step-index profile when the surrounding refractive index (SKI) is lower than that of the coreless fiber. Thus, it becomes the conventional single-mode multimode single-mode (SMS) fiber structure but with a larger core size. The output spectra will shift along with the changes in the SKI owing to the direct exposure of the coreless fiber. The output spectra under different SKIs were numerically studied, as well as the sensitivities with different lengths and diameters of the coreless fiber. The predication and calculation showed the good agreement with the experimental results. The proposed RI sensor proved to be feasible by verification experiments, and the relative error was merely 0.1% which occupied preferable sensing performance and practicability.
文摘This study is devoted to the experimental validation of the multi-type sensor placement and response reconstruction method for structural health monitoring of long-span suspension bridges. The method for multi-type sensor placement and response reconstruction is briefly described. A test bed, comprising of a physical model and an updated finite element (P-E) model of a long-span suspension bridge is also concisely introduced. The proposed method is then applied to the test bed; the equation of motion of the test bed subject to ground motion, the objective function for sensor location optimization, the principles for mode selection and multi-type response reconstruction are established. A numerical study using the updated FE model is performed to select the sensor types, numbers, and locations. Subsequently, with the identified sensor locations and some practical considerations, fiber Bragg grating (FBG) sensors, laser displacement transducers, and accelerometers are installed on the physical bridge model. Finally, experimental investigations are conducted to validate the proposed method. The experimental results show that the reconstructed responses using the measured responses from the limited number of multitype sensors agree well with the actual bridge responses. The proposed method is validated to be feasible and effective for the monitoring of structural behavior of longspan suspension bridges.