To efficiently exploit the performance of single instruction multiple data (SIMD) architectures for video coding, a parallel memory architecture with power-of-two memory modules is proposed. It employs two novel ske...To efficiently exploit the performance of single instruction multiple data (SIMD) architectures for video coding, a parallel memory architecture with power-of-two memory modules is proposed. It employs two novel skewing schemes to provide conflict-free access to adjacent elements (8-bit and 16-bit data types) or with power-of-two intervals in both horizontal and vertical directions, which were not possible in previous parallel memory architectures. Area consumptions and delay estimations are given respectively with 4, 8 and 16 memory modules. Under a 0.18-pm CMOS technology, the synthesis results show that the proposed system can achieve 230 MHz clock frequency with 16 memory modules at the cost of 19k gates when read and write latencies are 3 and 2 clock cycles, respectively. We implement the proposed parallel memory architecture on a video signal processor (VSP). The results show that VSP enhanced with the proposed architecture achieves 1.28× speedups for H.264 real-time decoding.展开更多
Rectification for airborne linear images is an indispensable preprocessing step. This paper presents in detail a two-step rectification algorithm. The first step is to establish the model of direct georeference positi...Rectification for airborne linear images is an indispensable preprocessing step. This paper presents in detail a two-step rectification algorithm. The first step is to establish the model of direct georeference position using the data provided by the Po- sitioning and Orientation System (POS) and obtain the mathematical relationships between the image points and ground reference points. The second step is to apply polynomial distortion model and Bilinear Interpolation to get the final precise rectified images. In this step, a reference image is required and some ground control points (GCPs) are selected. Experiments showed that the final rectified images are satisfactory, and that our two-step rectification algorithm is very effective.展开更多
基金Project (No. 2005AA1Z1271) supported by the Hi-Tech Research and Development Program (863) of China
文摘To efficiently exploit the performance of single instruction multiple data (SIMD) architectures for video coding, a parallel memory architecture with power-of-two memory modules is proposed. It employs two novel skewing schemes to provide conflict-free access to adjacent elements (8-bit and 16-bit data types) or with power-of-two intervals in both horizontal and vertical directions, which were not possible in previous parallel memory architectures. Area consumptions and delay estimations are given respectively with 4, 8 and 16 memory modules. Under a 0.18-pm CMOS technology, the synthesis results show that the proposed system can achieve 230 MHz clock frequency with 16 memory modules at the cost of 19k gates when read and write latencies are 3 and 2 clock cycles, respectively. We implement the proposed parallel memory architecture on a video signal processor (VSP). The results show that VSP enhanced with the proposed architecture achieves 1.28× speedups for H.264 real-time decoding.
基金Project (No. 02DZ15001) supported by Shanghai Science and Technology Development Funds, China
文摘Rectification for airborne linear images is an indispensable preprocessing step. This paper presents in detail a two-step rectification algorithm. The first step is to establish the model of direct georeference position using the data provided by the Po- sitioning and Orientation System (POS) and obtain the mathematical relationships between the image points and ground reference points. The second step is to apply polynomial distortion model and Bilinear Interpolation to get the final precise rectified images. In this step, a reference image is required and some ground control points (GCPs) are selected. Experiments showed that the final rectified images are satisfactory, and that our two-step rectification algorithm is very effective.