Changes in the water cycle on the Tibetan Plateau(TP)have a significant impact on local agricultural production and livelihoods and its downstream regions.Against the background of widely reported warming and wetting,...Changes in the water cycle on the Tibetan Plateau(TP)have a significant impact on local agricultural production and livelihoods and its downstream regions.Against the background of widely reported warming and wetting,the hydrological cycle has accelerated and the likelihood of extreme weather events and natural disasters occurring(i.e.,snowstorms,floods,landslides,mudslides,and ice avalanches)has also intensified,especially in the highelevation mountainous regions.Thus,an accurate estimation of the intensity and variation of each component of the water cycle is an urgent scientific question for the assessment of plateau environmental changes.Following the transformation and movement of water between the atmosphere,biosphere and hydrosphere,the authors highlight the urgent need to strengthen the three-dimensional comprehensive observation system(including the eddy covariance system;planetary boundary layer tower;profile measurements of temperature,humidity,and wind by microwave radiometers,wind profiler,and radiosonde system;and cloud and precipitation radars)in the TP region and propose a practical implementation plan.The construction of such a three-dimensional observation system is expected to promote the study of environmental changes and natural hazards prevention.展开更多
We study the dynamics of the multipartite systems nonresonantly interacting with electromagnetic fields, focusing on the large detuning limit for the effective Hamiltonian. Due to the many-particle interference effect...We study the dynamics of the multipartite systems nonresonantly interacting with electromagnetic fields, focusing on the large detuning limit for the effective Hamiltonian. Due to the many-particle interference effects, the more rigorous large detuning condition for neglecting the rapidly oscillating terms for the effective Plamiltonian should be △ 〉〉 N^1/2 g, instead of △ 〉〉 g usually used in the literature even in the case of multipartite systems, with N the number of microparticles involved, g the coupling strength, A the detuning. This result is significant since merely the satisfaction of the original condition will result in the invalidity of the effective Hamiltonian and the errors of the parameters associated with the detuning in the multipartite case.展开更多
基金This research was jointly funded by the Second Tibetan Plateau Scientific Expedition and Research Program(Grant Nos.2019QZKK0103 and 2019QZKK0105)the National Natural Science Foundation of China(Grant Nos.91837208 and 42075085).
文摘Changes in the water cycle on the Tibetan Plateau(TP)have a significant impact on local agricultural production and livelihoods and its downstream regions.Against the background of widely reported warming and wetting,the hydrological cycle has accelerated and the likelihood of extreme weather events and natural disasters occurring(i.e.,snowstorms,floods,landslides,mudslides,and ice avalanches)has also intensified,especially in the highelevation mountainous regions.Thus,an accurate estimation of the intensity and variation of each component of the water cycle is an urgent scientific question for the assessment of plateau environmental changes.Following the transformation and movement of water between the atmosphere,biosphere and hydrosphere,the authors highlight the urgent need to strengthen the three-dimensional comprehensive observation system(including the eddy covariance system;planetary boundary layer tower;profile measurements of temperature,humidity,and wind by microwave radiometers,wind profiler,and radiosonde system;and cloud and precipitation radars)in the TP region and propose a practical implementation plan.The construction of such a three-dimensional observation system is expected to promote the study of environmental changes and natural hazards prevention.
基金Supported by National Natural Science Foundation of China under Grant No.10774192
文摘We study the dynamics of the multipartite systems nonresonantly interacting with electromagnetic fields, focusing on the large detuning limit for the effective Hamiltonian. Due to the many-particle interference effects, the more rigorous large detuning condition for neglecting the rapidly oscillating terms for the effective Plamiltonian should be △ 〉〉 N^1/2 g, instead of △ 〉〉 g usually used in the literature even in the case of multipartite systems, with N the number of microparticles involved, g the coupling strength, A the detuning. This result is significant since merely the satisfaction of the original condition will result in the invalidity of the effective Hamiltonian and the errors of the parameters associated with the detuning in the multipartite case.