期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
使用基于多例学习的启发式SVM算法的图像自动标注 被引量:19
1
作者 路晶 马少平 《计算机研究与发展》 EI CSCD 北大核心 2009年第5期864-871,共8页
在基于内容的图像检索中,按照图像的语义内容进行自动标注是一个具有挑战性的难题.将解释语义内容的关键词当做图像类别标签可使自动标注问题转化为图像分类问题.对于多数训练数据,关键词仅仅是针对整幅图像来标注的,并不是针对图像中... 在基于内容的图像检索中,按照图像的语义内容进行自动标注是一个具有挑战性的难题.将解释语义内容的关键词当做图像类别标签可使自动标注问题转化为图像分类问题.对于多数训练数据,关键词仅仅是针对整幅图像来标注的,并不是针对图像中的具体区域.为了克服这个问题,提出了多例学习(MIL)框架下基于支持向量机(SVM)的启发式算法HSVM-MIL.使用迭代的启发式最优化算法来解决多例学习中复杂的整型规划问题,以使分类风险最小化.每次迭代试图改变一个样例的类别以最大化普通SVM的分类间隔.在图像数据库和多例学习的经典数据集MUSK上的实验表明,HSVM-MIL算法具有优良的分类性能.由于该算法针对个体样例的正负分类进行判断,因而能够确定图像区域与关键词之间的对应关系,克服了大多数多例学习算法的缺点. 展开更多
关键词 图像自动标注 多例学习 支持向量机 整型规划 启发式最优化算法
下载PDF
基于多例学习的Web图像聚类 被引量:6
2
作者 路晶 马少平 《计算机研究与发展》 EI CSCD 北大核心 2009年第9期1462-1470,共9页
在图像分类和自动标注系统中,多例学习(MIL)是研究的热点.目前MIL中的算法多为监督学习方法.针对非监督学习,在基于EM算法和启发式迭代优化算法的框架下,提出了6种多例聚类算法,并通过它们对来自于真实Web环境下的图像进行聚类以分析用... 在图像分类和自动标注系统中,多例学习(MIL)是研究的热点.目前MIL中的算法多为监督学习方法.针对非监督学习,在基于EM算法和启发式迭代优化算法的框架下,提出了6种多例聚类算法,并通过它们对来自于真实Web环境下的图像进行聚类以分析用户的搜索兴趣.由于一幅图像含有若干个区域,每个区域可被看为一个样例,属于同一个图像的区域则组成一个包.因此如何理解图像语义内容的问题即转化为多例学习.在多例学习的经典数据集MUSK数据和来自于Web图像集上的比较实验表明,提出的多例聚类算法具有优良的聚类性能. 展开更多
关键词 非监督学习 多例学习 聚类算法 EM算法 启发式迭代优化算法
下载PDF
Human interaction recognition based on sparse representation of feature covariance matrices 被引量:3
3
作者 WANG Jun ZHOU Si-chao XIA Li-min 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第2期304-314,共11页
A new method for interaction recognition based on sparse representation of feature covariance matrices was presented.Firstly,the dense trajectories(DT)extracted from the video were clustered into different groups to e... A new method for interaction recognition based on sparse representation of feature covariance matrices was presented.Firstly,the dense trajectories(DT)extracted from the video were clustered into different groups to eliminate the irrelevant trajectories,which could greatly reduce the noise influence on feature extraction.Then,the trajectory tunnels were characterized by means of feature covariance matrices.In this way,the discriminative descriptors could be extracted,which was also an effective solution to the problem that the description of the feature second-order statistics is insufficient.After that,an over-complete dictionary was learned with the descriptors and all the descriptors were encoded using sparse coding(SC).Classification was achieved using multiple instance learning(MIL),which was more suitable for complex environments.The proposed method was tested and evaluated on the WEB Interaction dataset and the UT interaction dataset.The experimental results demonstrated the superior efficiency. 展开更多
关键词 interaction recognition dense trajectory sparse coding MIL
下载PDF
Classification of hyperspectral remote sensing images based on simulated annealing genetic algorithm and multiple instance learning 被引量:3
4
作者 高红民 周惠 +1 位作者 徐立中 石爱业 《Journal of Central South University》 SCIE EI CAS 2014年第1期262-271,共10页
A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decom... A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decomposition, which combines the simulated annealing algorithm with the genetic algorithm in choosing different cross-over and mutation probabilities, as well as mutation individuals. Then MIL was combined with image segmentation, clustering and support vector machine algorithms to classify hyperspectral image. The experimental results show that this proposed method can get high classification accuracy of 93.13% at small training samples and the weaknesses of the conventional methods are overcome. 展开更多
关键词 hyperspectral remote sensing images simulated annealing genetic algorithm support vector machine band selection multiple instance learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部