针对相干信号波达方向(Direction of Arrival,DOA)估计,提出了一种改进的多重信号分类(Multiple Signal Classification,MUSIC)算法。首先,利用信号协方差矩阵的两个最大特征值所对应的特征向量,构造出两个Toeplitz矩阵;然后,利用前后...针对相干信号波达方向(Direction of Arrival,DOA)估计,提出了一种改进的多重信号分类(Multiple Signal Classification,MUSIC)算法。首先,利用信号协方差矩阵的两个最大特征值所对应的特征向量,构造出两个Toeplitz矩阵;然后,利用前后向空间平滑思想得到这两个矩阵的无偏估计并求和;最后,利用MUSIC算法从中估计出相干信号DOA。和已有方法相比,该方法无需损失阵列孔径且具有更优的DOA估计性能。展开更多
针对传统超声波测风装置测风精度不高、抗噪声能力弱,提出了一种改进多重信号分类(multiple signal classification,MUSIC)算法的超声波测风方法。采用一种弧形6阵元超声波传感器阵列的测风结构,推导其阵列流型;在此基础上,添加小波阈...针对传统超声波测风装置测风精度不高、抗噪声能力弱,提出了一种改进多重信号分类(multiple signal classification,MUSIC)算法的超声波测风方法。采用一种弧形6阵元超声波传感器阵列的测风结构,推导其阵列流型;在此基础上,添加小波阈值降噪算法提高信号信噪比,降低噪声信号协方差矩阵的秩;再使用PHAT加权广义互相关时延估计算法以提高时延估计的准确性,同时根据时延关系对传统MUSIC算法矢量矩阵进行改进;最后通过MUSIC算法实现对风速风向的测量。理论分析与仿真结果表明:改进后的MUSIC算法具有较好的抗噪性能和较高的风参数测量精度,测量风速绝对误差达到0.15 m/s,风向绝对误差达到2°,可以应用于对风参数要求较高的场景。展开更多
针对傅里叶方法估计线性调频连续波差频信号频率在小尺度上精度低的缺陷,提出利用多重信号分类法(Multiple Signal Classification,MUSIC)估计差频信号频率。该方法在频域上对自相关功率谱进行信号和噪声的空间分解,利用信号空间和噪声...针对傅里叶方法估计线性调频连续波差频信号频率在小尺度上精度低的缺陷,提出利用多重信号分类法(Multiple Signal Classification,MUSIC)估计差频信号频率。该方法在频域上对自相关功率谱进行信号和噪声的空间分解,利用信号空间和噪声空间的正交性,完成对信号频率的超分辨估计。仿真计算和实验室测试表明,该方法有效减小了距离分辨单元的影响,其单一目标距离测量精度优于傅里叶法。展开更多
近年来,针对非圆信号的测向算法已陆续提出,对这些算法的渐近性能及Cramer-Rao界的分析也已见报道,但仍未涉及模型误差对此类算法影响的分析.本文概括介绍了用于非圆信号测向的MUSIC(Multiple Signal Classi-fication)算法,对其空间谱...近年来,针对非圆信号的测向算法已陆续提出,对这些算法的渐近性能及Cramer-Rao界的分析也已见报道,但仍未涉及模型误差对此类算法影响的分析.本文概括介绍了用于非圆信号测向的MUSIC(Multiple Signal Classi-fication)算法,对其空间谱函数进行一阶泰勒展开,得到了测向误差的表达式,从而求得测向均方误差统计意义上的表达式.仿真实验验证了推导的正确性,并由理论结果分析了模型误差条件下测向误差与角度间隔和非圆相位差的关系.展开更多
文摘针对相干信号波达方向(Direction of Arrival,DOA)估计,提出了一种改进的多重信号分类(Multiple Signal Classification,MUSIC)算法。首先,利用信号协方差矩阵的两个最大特征值所对应的特征向量,构造出两个Toeplitz矩阵;然后,利用前后向空间平滑思想得到这两个矩阵的无偏估计并求和;最后,利用MUSIC算法从中估计出相干信号DOA。和已有方法相比,该方法无需损失阵列孔径且具有更优的DOA估计性能。
文摘针对传统超声波测风装置测风精度不高、抗噪声能力弱,提出了一种改进多重信号分类(multiple signal classification,MUSIC)算法的超声波测风方法。采用一种弧形6阵元超声波传感器阵列的测风结构,推导其阵列流型;在此基础上,添加小波阈值降噪算法提高信号信噪比,降低噪声信号协方差矩阵的秩;再使用PHAT加权广义互相关时延估计算法以提高时延估计的准确性,同时根据时延关系对传统MUSIC算法矢量矩阵进行改进;最后通过MUSIC算法实现对风速风向的测量。理论分析与仿真结果表明:改进后的MUSIC算法具有较好的抗噪性能和较高的风参数测量精度,测量风速绝对误差达到0.15 m/s,风向绝对误差达到2°,可以应用于对风参数要求较高的场景。
文摘针对傅里叶方法估计线性调频连续波差频信号频率在小尺度上精度低的缺陷,提出利用多重信号分类法(Multiple Signal Classification,MUSIC)估计差频信号频率。该方法在频域上对自相关功率谱进行信号和噪声的空间分解,利用信号空间和噪声空间的正交性,完成对信号频率的超分辨估计。仿真计算和实验室测试表明,该方法有效减小了距离分辨单元的影响,其单一目标距离测量精度优于傅里叶法。
文摘近年来,针对非圆信号的测向算法已陆续提出,对这些算法的渐近性能及Cramer-Rao界的分析也已见报道,但仍未涉及模型误差对此类算法影响的分析.本文概括介绍了用于非圆信号测向的MUSIC(Multiple Signal Classi-fication)算法,对其空间谱函数进行一阶泰勒展开,得到了测向误差的表达式,从而求得测向均方误差统计意义上的表达式.仿真实验验证了推导的正确性,并由理论结果分析了模型误差条件下测向误差与角度间隔和非圆相位差的关系.