In the wireless localization application, multipath propagation seriously affects the localization accuracy. This paper presents two algorithms to solve the multipath problem. Firstly, we improve the Line of Possible ...In the wireless localization application, multipath propagation seriously affects the localization accuracy. This paper presents two algorithms to solve the multipath problem. Firstly, we improve the Line of Possible Mobile Device(LPMD) algorithm by optimizing the utilization of the direct paths for single-bound scattering scenario. Secondly, the signal path reckoning method with the assistance of geographic information system is proposed to solve the problem of localization with multi-bound scattering paths. With the building model's idealization, the proposed method refers to the idea of ray tracing and dead reckoning. According to the rule of wireless signal reflection, the signal propagation path is reckoned using the measurements of emission angle and propagation distance, and then the estimated location can be obtained. Simulation shows that the proposed method obtains better results than the existing geometric localization methods in multipath environment when the angle error is controlled.展开更多
This paper uses a reduced model for simulating propagation of acoustic signals in fluid filled pipelines. The study allows a better understanding of the multipath environment found in a pipeline system with the goal o...This paper uses a reduced model for simulating propagation of acoustic signals in fluid filled pipelines. The study allows a better understanding of the multipath environment found in a pipeline system with the goal of finding optimum solutions for monitoring the pipeline integrity. Data provided both from the simplified model and from an equivalent experimental test rig are implemented using classical time delay estimation algorithms. It is observed an improved accuracy when closing gradually the pipeline end as a result of cancelling the multipath effect at the system's terminal.展开更多
基金supported by the National Natural Science Foundation of China (61471031)the Fundamental Research Funds for the Central Universities,Beijing Jiaotong University (2013JBZ001)+2 种基金National Science and Technology Major Project (2016ZX03001014006)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University (No.2017D14)Shenzhen Peacock Program under Grant No.KQJSCX20160226193545
文摘In the wireless localization application, multipath propagation seriously affects the localization accuracy. This paper presents two algorithms to solve the multipath problem. Firstly, we improve the Line of Possible Mobile Device(LPMD) algorithm by optimizing the utilization of the direct paths for single-bound scattering scenario. Secondly, the signal path reckoning method with the assistance of geographic information system is proposed to solve the problem of localization with multi-bound scattering paths. With the building model's idealization, the proposed method refers to the idea of ray tracing and dead reckoning. According to the rule of wireless signal reflection, the signal propagation path is reckoned using the measurements of emission angle and propagation distance, and then the estimated location can be obtained. Simulation shows that the proposed method obtains better results than the existing geometric localization methods in multipath environment when the angle error is controlled.
文摘This paper uses a reduced model for simulating propagation of acoustic signals in fluid filled pipelines. The study allows a better understanding of the multipath environment found in a pipeline system with the goal of finding optimum solutions for monitoring the pipeline integrity. Data provided both from the simplified model and from an equivalent experimental test rig are implemented using classical time delay estimation algorithms. It is observed an improved accuracy when closing gradually the pipeline end as a result of cancelling the multipath effect at the system's terminal.