This paper presents a new method of High Resolution Range (HRR) profile formation based on Linear Frequency Modulation (LFM) signal fusion of multiple radars with multiple frequency bands. The principle of the multipl...This paper presents a new method of High Resolution Range (HRR) profile formation based on Linear Frequency Modulation (LFM) signal fusion of multiple radars with multiple frequency bands. The principle of the multiple radars signal fusion improving the range resolution is analyzed. With the analysis of return signals received by two radars,it is derived that the phase difference between the echoes varies almost linearly with respect to the frequency if the distance between two radars is neg-ligible compared with the radar observation distance. To compensate the phase difference,an en-tropy-minimization principle based compensation algorithm is proposed. During the fusion process,the B-splines interpolation method is applied to resample the signals for Fourier transform imaging. The theoretical analysis and simulations results show the proposed method can effectively increase signal bandwidth and provide a high resolution range profile.展开更多
The manifold physical signals including micro resistance,infrared thermal signal and acoustic emission signal in the tensile test for double-material friction welding normative samples were monitored and collected dyn...The manifold physical signals including micro resistance,infrared thermal signal and acoustic emission signal in the tensile test for double-material friction welding normative samples were monitored and collected dynamically by TH2512 micro resistance measuring apparatus,flir infrared thermal camera and acoustic emission equipment which possesses 18 bit PCI-2 data acquisition board.Applied acoustic emission and thermal infrared NDT(non-destructive testing) means were used to verify the feasibility of using resistance method and to monitor dynamic damage of the samples.The research of the dynamic monitoring system was carried out with multi-information fusion including resistance,infrared and acoustic emission.The results show that the resistance signal,infrared signal and acoustic emission signal collected synchronously in the injury process of samples have a good mapping.Electrical,thermal and acoustic signals can more accurately capture initiation and development of micro-defects in the sample.Using dynamic micro-resistance method to monitor damage is possible.The method of multi-information fusion monitoring damage possesses higher reliability,which makes the establishing of health condition diagnosing and early warning platform with multiple physical information monitoring possible.展开更多
文摘This paper presents a new method of High Resolution Range (HRR) profile formation based on Linear Frequency Modulation (LFM) signal fusion of multiple radars with multiple frequency bands. The principle of the multiple radars signal fusion improving the range resolution is analyzed. With the analysis of return signals received by two radars,it is derived that the phase difference between the echoes varies almost linearly with respect to the frequency if the distance between two radars is neg-ligible compared with the radar observation distance. To compensate the phase difference,an en-tropy-minimization principle based compensation algorithm is proposed. During the fusion process,the B-splines interpolation method is applied to resample the signals for Fourier transform imaging. The theoretical analysis and simulations results show the proposed method can effectively increase signal bandwidth and provide a high resolution range profile.
基金Project(51125023) supported by Distinguished Young Scholars of Natural Science Foundation of ChinaProject(2011CB013405) supported by the National Basic Research Program of China+1 种基金Project supported by China Equipment Maintenance ProgramProject (3120001) supported by the Natural Science Foundation of Beijing,China
文摘The manifold physical signals including micro resistance,infrared thermal signal and acoustic emission signal in the tensile test for double-material friction welding normative samples were monitored and collected dynamically by TH2512 micro resistance measuring apparatus,flir infrared thermal camera and acoustic emission equipment which possesses 18 bit PCI-2 data acquisition board.Applied acoustic emission and thermal infrared NDT(non-destructive testing) means were used to verify the feasibility of using resistance method and to monitor dynamic damage of the samples.The research of the dynamic monitoring system was carried out with multi-information fusion including resistance,infrared and acoustic emission.The results show that the resistance signal,infrared signal and acoustic emission signal collected synchronously in the injury process of samples have a good mapping.Electrical,thermal and acoustic signals can more accurately capture initiation and development of micro-defects in the sample.Using dynamic micro-resistance method to monitor damage is possible.The method of multi-information fusion monitoring damage possesses higher reliability,which makes the establishing of health condition diagnosing and early warning platform with multiple physical information monitoring possible.