在最小二乘方法(RLS,recursive least square)的基础上,提出利用格型递归最小二乘(LRLS,lattice recursiveleast square)算法对AR模型参数进行自适应估计。该算法为模块式的多极格型结构,降低了一般RLS算法的计算复杂度。利用实测的动...在最小二乘方法(RLS,recursive least square)的基础上,提出利用格型递归最小二乘(LRLS,lattice recursiveleast square)算法对AR模型参数进行自适应估计。该算法为模块式的多极格型结构,降低了一般RLS算法的计算复杂度。利用实测的动态数据结合AIC准则建立自适应AR预报模型,并将该模型应用于船舶运动预报中,仿真结果表明,相对于最小二乘算法,基于LRLS算法的AR预报模型可有效提高船舶运动预报精度。展开更多
针对并联型有源电力滤波器(active power filter,APF)谐波检测环节的延时和谐波电流跟踪环节的鲁棒性差、跟踪精度不高的问题,建立了系统解耦后的数学模型,提出了基于递归最小二乘(recursive least squares,RLS)算法的并联型APF全局积...针对并联型有源电力滤波器(active power filter,APF)谐波检测环节的延时和谐波电流跟踪环节的鲁棒性差、跟踪精度不高的问题,建立了系统解耦后的数学模型,提出了基于递归最小二乘(recursive least squares,RLS)算法的并联型APF全局积分滑模变结构控制策略。谐波检测环节采用改进的瞬时无功功率理论的id-iq法,用RLS自适应滤波器替换传统的Butterworth低通滤波器,解决了传统的Butterworth低通滤波器因延时而导致的一个基波周期(20 ms)内检测盲区问题。谐波电流跟踪环节采用全局积分滑模变结构控制方法,引入了全局积分滑模面,运用Lyapunov稳定性理论导出的控制律兼顾了全局滑模的快速性和积分滑模的准确性。在解决了谐波检测环节延时的情况下,将全局积分滑模控制策略与传统的PI控制和滞环控制对比,仿真实验结果表明:全局积分滑模控制对指令电流具有更高的跟踪精度,且具有更低的电网侧电流总谐波畸变率(total harmonic distortion,THD)。展开更多
水声信道具有稀疏性的特点,因此高精度低复杂度的稀疏信道估计算法对水声通信具有重要意义。基于自适应滤波算法的信道估计问题本质上是线性回归模型参数的求解问题,传统的最小二乘(Least Square,LS)、最小均方(Least Mean Square,LMS)...水声信道具有稀疏性的特点,因此高精度低复杂度的稀疏信道估计算法对水声通信具有重要意义。基于自适应滤波算法的信道估计问题本质上是线性回归模型参数的求解问题,传统的最小二乘(Least Square,LS)、最小均方(Least Mean Square,LMS)及递归最小二乘(Recursive Least Squares,RLS)算法在估计稀疏信道时不仅复杂度较高,而且在求解线性回归模型时,因忽略自变量的多重共线性而使稀疏信道估计精度降低。针对上述问题,首先,在经典RLS算法的代价函数中加入信道系数的范数对其进行约束,从而提高了稀疏信道估计的精度,然后,采用滑动窗的方式对其代价函数进行处理以减少算法的计算量。在此基础上又引入二分坐标下降(Dichotomous Coordinate Descent,DCD)算法搜索单次迭代中使代价函数最小的解,进一步降低了算法的复杂度。仿真结果表明,文中所提的算法相较于经典算法在估计精度和复杂度方面具有一定的优越性。展开更多
文摘在最小二乘方法(RLS,recursive least square)的基础上,提出利用格型递归最小二乘(LRLS,lattice recursiveleast square)算法对AR模型参数进行自适应估计。该算法为模块式的多极格型结构,降低了一般RLS算法的计算复杂度。利用实测的动态数据结合AIC准则建立自适应AR预报模型,并将该模型应用于船舶运动预报中,仿真结果表明,相对于最小二乘算法,基于LRLS算法的AR预报模型可有效提高船舶运动预报精度。
文摘针对并联型有源电力滤波器(active power filter,APF)谐波检测环节的延时和谐波电流跟踪环节的鲁棒性差、跟踪精度不高的问题,建立了系统解耦后的数学模型,提出了基于递归最小二乘(recursive least squares,RLS)算法的并联型APF全局积分滑模变结构控制策略。谐波检测环节采用改进的瞬时无功功率理论的id-iq法,用RLS自适应滤波器替换传统的Butterworth低通滤波器,解决了传统的Butterworth低通滤波器因延时而导致的一个基波周期(20 ms)内检测盲区问题。谐波电流跟踪环节采用全局积分滑模变结构控制方法,引入了全局积分滑模面,运用Lyapunov稳定性理论导出的控制律兼顾了全局滑模的快速性和积分滑模的准确性。在解决了谐波检测环节延时的情况下,将全局积分滑模控制策略与传统的PI控制和滞环控制对比,仿真实验结果表明:全局积分滑模控制对指令电流具有更高的跟踪精度,且具有更低的电网侧电流总谐波畸变率(total harmonic distortion,THD)。
文摘水声信道具有稀疏性的特点,因此高精度低复杂度的稀疏信道估计算法对水声通信具有重要意义。基于自适应滤波算法的信道估计问题本质上是线性回归模型参数的求解问题,传统的最小二乘(Least Square,LS)、最小均方(Least Mean Square,LMS)及递归最小二乘(Recursive Least Squares,RLS)算法在估计稀疏信道时不仅复杂度较高,而且在求解线性回归模型时,因忽略自变量的多重共线性而使稀疏信道估计精度降低。针对上述问题,首先,在经典RLS算法的代价函数中加入信道系数的范数对其进行约束,从而提高了稀疏信道估计的精度,然后,采用滑动窗的方式对其代价函数进行处理以减少算法的计算量。在此基础上又引入二分坐标下降(Dichotomous Coordinate Descent,DCD)算法搜索单次迭代中使代价函数最小的解,进一步降低了算法的复杂度。仿真结果表明,文中所提的算法相较于经典算法在估计精度和复杂度方面具有一定的优越性。