This paper proposes a threshold mult-proxy multi-signature scheme with share verification. In the scheme, a subset of original signers allows a designated group of proxy signers to sign on behalf of the original group...This paper proposes a threshold mult-proxy multi-signature scheme with share verification. In the scheme, a subset of original signers allows a designated group of proxy signers to sign on behalf of the original group. A message m has to be signed by a subset of proxy signers who can represent the proxy group. Then, the proxy signature is sent to the verifier group. A subset of verifiers in the verifier group can also represent the group to authenticate the proxy signature. In other words, some threshold values will be given to indicate the number of persons to represent a group to authorize the signing capability or to sign a message or to verify the proxy signature.展开更多
The problem caused by shortness or excessiveness of snapshots and by coherent sources in underwater acoustic positioning is considered.A matched field localization algorithm based on CS-MUSIC(Compressive Sensing Multi...The problem caused by shortness or excessiveness of snapshots and by coherent sources in underwater acoustic positioning is considered.A matched field localization algorithm based on CS-MUSIC(Compressive Sensing Multiple Signal Classification) is proposed based on the sparse mathematical model of the underwater positioning.The signal matrix is calculated through the SVD(Singular Value Decomposition) of the observation matrix.The observation matrix in the sparse mathematical model is replaced by the signal matrix,and a new concise sparse mathematical model is obtained,which means not only the scale of the localization problem but also the noise level is reduced;then the new sparse mathematical model is solved by the CS-MUSIC algorithm which is a combination of CS(Compressive Sensing) method and MUSIC(Multiple Signal Classification) method.The algorithm proposed in this paper can overcome effectively the difficulties caused by correlated sources and shortness of snapshots,and it can also reduce the time complexity and noise level of the localization problem by using the SVD of the observation matrix when the number of snapshots is large,which will be proved in this paper.展开更多
The circuit testable realizations of multiple-valued functions are studied in this letter. First of all,it is shown that one vector detects all skew faults in multiplication modulo circuits or in addi-tion modulo circ...The circuit testable realizations of multiple-valued functions are studied in this letter. First of all,it is shown that one vector detects all skew faults in multiplication modulo circuits or in addi-tion modulo circuits,and n+1 vectors detect all skew faults in the circuit realization of multiple-valued functions with n inputs. Secondly,min(max) bridging fault test sets with n+2 vectors are pre-sented for the circuit realizations of multiple-valued logic functions. Finally,a tree structure is used instead of cascade structure to reduce the delay in the circuit realization,it is shown that three vec-tors are sufficient to detect all single stuck-at faults in the tree structure realization of multiple-valued logic functions.展开更多
The high-accuracy, wide-range frequency estimation algorithm for multi-component signals presented in this paper, is based on a numerical differentiation and central Lagrange interpolation. With the sample sequences, ...The high-accuracy, wide-range frequency estimation algorithm for multi-component signals presented in this paper, is based on a numerical differentiation and central Lagrange interpolation. With the sample sequences, which need at most 7 points and are sampled at a sample frequency of 25600 Hz, and computation sequences, using employed a formulation proposed in this paper, the frequencies of each component of the signal are all estimated at an accuracy of 0.001% over 1 Hz to 800 kHz with the amplitudes of each component of the signal varying from 1 V to 200 V and the phase angle of each component of the signal varying from 0° to 360°. The proposed algorithm needs at most a half cycle for the frequencies of each component of the signal under noisy or non-noisy conditions. A testing example is given to illustrate the proposed algorithm in Matlab environment.展开更多
基金Supported by the National Natural Science Foundation of China (No.10471152).
文摘This paper proposes a threshold mult-proxy multi-signature scheme with share verification. In the scheme, a subset of original signers allows a designated group of proxy signers to sign on behalf of the original group. A message m has to be signed by a subset of proxy signers who can represent the proxy group. Then, the proxy signature is sent to the verifier group. A subset of verifiers in the verifier group can also represent the group to authenticate the proxy signature. In other words, some threshold values will be given to indicate the number of persons to represent a group to authorize the signing capability or to sign a message or to verify the proxy signature.
基金supported by the National Natural Science Foundation of China (61202208)
文摘The problem caused by shortness or excessiveness of snapshots and by coherent sources in underwater acoustic positioning is considered.A matched field localization algorithm based on CS-MUSIC(Compressive Sensing Multiple Signal Classification) is proposed based on the sparse mathematical model of the underwater positioning.The signal matrix is calculated through the SVD(Singular Value Decomposition) of the observation matrix.The observation matrix in the sparse mathematical model is replaced by the signal matrix,and a new concise sparse mathematical model is obtained,which means not only the scale of the localization problem but also the noise level is reduced;then the new sparse mathematical model is solved by the CS-MUSIC algorithm which is a combination of CS(Compressive Sensing) method and MUSIC(Multiple Signal Classification) method.The algorithm proposed in this paper can overcome effectively the difficulties caused by correlated sources and shortness of snapshots,and it can also reduce the time complexity and noise level of the localization problem by using the SVD of the observation matrix when the number of snapshots is large,which will be proved in this paper.
基金Supported by the National Natural Science Foundation of China (No.60006002)the Education Department of Guangdong Province of China (No.02019).
文摘The circuit testable realizations of multiple-valued functions are studied in this letter. First of all,it is shown that one vector detects all skew faults in multiplication modulo circuits or in addi-tion modulo circuits,and n+1 vectors detect all skew faults in the circuit realization of multiple-valued functions with n inputs. Secondly,min(max) bridging fault test sets with n+2 vectors are pre-sented for the circuit realizations of multiple-valued logic functions. Finally,a tree structure is used instead of cascade structure to reduce the delay in the circuit realization,it is shown that three vec-tors are sufficient to detect all single stuck-at faults in the tree structure realization of multiple-valued logic functions.
文摘The high-accuracy, wide-range frequency estimation algorithm for multi-component signals presented in this paper, is based on a numerical differentiation and central Lagrange interpolation. With the sample sequences, which need at most 7 points and are sampled at a sample frequency of 25600 Hz, and computation sequences, using employed a formulation proposed in this paper, the frequencies of each component of the signal are all estimated at an accuracy of 0.001% over 1 Hz to 800 kHz with the amplitudes of each component of the signal varying from 1 V to 200 V and the phase angle of each component of the signal varying from 0° to 360°. The proposed algorithm needs at most a half cycle for the frequencies of each component of the signal under noisy or non-noisy conditions. A testing example is given to illustrate the proposed algorithm in Matlab environment.