期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
多值区间直觉模糊软集 被引量:2
1
作者 段梦雅 吴涛 马闯 《合肥学院学报(自然科学版)》 2016年第1期9-12,51,共5页
软集理论作为一种处理不确定性问题的新数学工具,弥补了传统不确定性理论在参数不足的缺陷,近年来在理论上得到长足发展,但是忽略了元素的像为多值且隶属度和非隶属度为区间数情形的讨论。将多值直觉模糊软集推广到多值区间直觉模糊软集... 软集理论作为一种处理不确定性问题的新数学工具,弥补了传统不确定性理论在参数不足的缺陷,近年来在理论上得到长足发展,但是忽略了元素的像为多值且隶属度和非隶属度为区间数情形的讨论。将多值直觉模糊软集推广到多值区间直觉模糊软集,并给出了多值区间直觉模糊软集的一些运算(交,并,补),讨论了其相应的一些性质,从而能更好的描述和求解不确定问题。 展开更多
关键词 模糊软集 多值直觉模糊集 多值区间直觉模糊软集
下载PDF
基于线性分配和Choquet积分的多值区间中智多属性决策方法 被引量:2
2
作者 杨威 王成军 刘勇 《控制与决策》 EI CSCD 北大核心 2017年第7期1338-1344,共7页
提出一种新的多值区间中智多属性决策方法.首先利用多值区间中智集描述不确定信息,定义多值区间中智值之间的余弦值和欧氏距离;然后采用Choquet积分描述属性之间的相关性,采用线性分配方法对方案进行排序,给出具体的方案排序方法;最后... 提出一种新的多值区间中智多属性决策方法.首先利用多值区间中智集描述不确定信息,定义多值区间中智值之间的余弦值和欧氏距离;然后采用Choquet积分描述属性之间的相关性,采用线性分配方法对方案进行排序,给出具体的方案排序方法;最后通过基于风险的地铁项目建设方案选择表明所提出方法的可行性和有效性. 展开更多
关键词 线性分配 多属性决策 多值区间中智数 CHOQUET积分
原文传递
基于兴趣度的多值关联规则挖掘 被引量:3
3
作者 汪慎文 刘坤起 石艳丽 《微计算机信息》 北大核心 2008年第24期98-99,91,共3页
主要讨论在大型数据库中挖掘多值关联规则。在对数值属性区域划分进行研究,提出多值区间下的Apriori定理、前件子集定理和后件子集定理,提出规则兴趣度的测量方法并且基于规则的兴趣度损失最小化来为区间合并作出决策。该区间合并的方... 主要讨论在大型数据库中挖掘多值关联规则。在对数值属性区域划分进行研究,提出多值区间下的Apriori定理、前件子集定理和后件子集定理,提出规则兴趣度的测量方法并且基于规则的兴趣度损失最小化来为区间合并作出决策。该区间合并的方法是一种全局的方法,因此可以得到更有价值的规则。 展开更多
关键词 多值关联规则 多值区间 兴趣度
下载PDF
Synthetic security assessment for incomplete interval-valued information system 被引量:1
4
作者 赵亮 Xue Zhi 《High Technology Letters》 EI CAS 2012年第2期160-166,共7页
In order to understand the security conditions of the incomplete interval-valued information system (IllS) and acquire the corresponding solution of security problems, this paper proposes a multi-attribute group dec... In order to understand the security conditions of the incomplete interval-valued information system (IllS) and acquire the corresponding solution of security problems, this paper proposes a multi-attribute group decision- making (MAGDM) security assessment method based on the technique for order performance by similarity to ideal solution (TOPSIS). For IllS with preference information, combining with dominance-based rough set approach (DRSA), the effect of incomplete interval-valued information on decision results is discussed. For the imprecise judgment matrices, the security attribute weight can be obtained using Gibbs sampling. A numerical example shows that the proposed method can acquire some valuable knowledge hidden in the incomplete interval-valued information. The effectiveness of the proposed method in the synthetic security assessment for IIIS is verified. 展开更多
关键词 security assessment incomplete interval-valued information system(IIIS) multi-attribute group decision-making(MAGDM) technique for order performance by similarity to ideal solution(TOPSIS) dominance- based rough set approach(DRSA) Gibbs sampling
下载PDF
Land cover classification of remote sensing imagery based on interval-valued data fuzzy c-means algorithm 被引量:4
5
作者 YU XianChuan HE Hui +1 位作者 HU Dan ZHOU Wei 《Science China Earth Sciences》 SCIE EI CAS 2014年第6期1306-1313,共8页
There is a certain degree of ambiguity associated with remote sensing as a means of performing earth observations.Using interval-valued data to describe clustering prototype features may be more suitable for handling ... There is a certain degree of ambiguity associated with remote sensing as a means of performing earth observations.Using interval-valued data to describe clustering prototype features may be more suitable for handling the fuzzy nature of remote sensing data,which is caused by the uncertainty and heterogeneity in the surface spectral reflectance of ground objects.After constructing a multi-spectral interval-valued model of source data and defining a distance measure to achieve the maximum dissimilarity between intervals,an interval-valued fuzzy c-means(FCM)clustering algorithm that considers both the functional characteristics of fuzzy clustering algorithms and the interregional features of ground object spectral reflectance was applied in this study.Such a process can significantly improve the clustering effect;specifically,the process can reduce the synonym spectrum phenomenon and the misclassification caused by the overlap of spectral features between classes of clustering results.Clustering analysis experiments aimed at land cover classification using remote sensing imagery from the SPOT-5 satellite sensor for the Pearl River Delta region,China,and the TM sensor for Yushu,Qinghai,China,were conducted,as well as experiments involving the conventional FCM algorithm,the results of which were used for comparative analysis.Next,a supervised classification method was used to validate the clustering results.The final results indicate that the proposed interval-valued FCM clustering is more effective than the conventional FCM clustering method for land cover classification using multi-spectral remote sensing imagery. 展开更多
关键词 fuzzy c-means cluster interval-valued data remote sensing imagery land cover classification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部