The multisymplectic geometry for the seismic wave equation is presented in this paper.The local energy conservation law,the local momentum evolution equations,and the multisymplectic form are derived directly from the...The multisymplectic geometry for the seismic wave equation is presented in this paper.The local energy conservation law,the local momentum evolution equations,and the multisymplectic form are derived directly from the variational principle.Based on the covariant Legendre transform,the multisymplectic Hamiltonian formulation is developed.Multisymplectic discretization and numerical experiments are also explored.展开更多
文摘The multisymplectic geometry for the seismic wave equation is presented in this paper.The local energy conservation law,the local momentum evolution equations,and the multisymplectic form are derived directly from the variational principle.Based on the covariant Legendre transform,the multisymplectic Hamiltonian formulation is developed.Multisymplectic discretization and numerical experiments are also explored.