Based on the data of 1950 – 1999 monthly global SST from Hadley Center, NCAR/NCEP reanalysis data and rainfall over 160 weather stations in China, investigation is conducted into the difference of summer rainfall in ...Based on the data of 1950 – 1999 monthly global SST from Hadley Center, NCAR/NCEP reanalysis data and rainfall over 160 weather stations in China, investigation is conducted into the difference of summer rainfall in China (hereafter referred to as the "CS rainfall") between the years with the Indian Ocean Dipole (IOD) occurring independently and those with IOD occurring along with ENSO so as to study the effects of El Ni?o - Southern Oscillation (ENSO) on the relationship between IOD and the CS rainfall. It is shown that CS rainfall will be more than normal in South China (centered in Hunan province) in the years of positive IOD occurring independently; the CS rainfall will be less (more) than normal in North China (Southeast China) in the years of positive IOD occurring together with ENSO. The effect of ENSO is offsetting (enhancing) the relationship between IOD and summer rainfall in Southwest China, the region joining the Yangtze River basin with the Huaihe River basin (hereafter referred to as the "Yangtze-Huaihe basin") and North China (Southeast China). The circulation field is also examined for preliminary causes of such an influence.展开更多
The lifetimes for the states of magnetic dipole band in106Ag have been measured using the Doppler-shift attenuation method via the reaction of100Mo(11B,5n)106Ag at a beam energy of 60 MeV.The reduced transition streng...The lifetimes for the states of magnetic dipole band in106Ag have been measured using the Doppler-shift attenuation method via the reaction of100Mo(11B,5n)106Ag at a beam energy of 60 MeV.The reduced transition strengths of the magnetic dipole band,the B(M1)/B(E2)ratios together with the signature of the level energy as a function of angular momentum for the positive parity states of106Ag show that a drastic change of excitation mode,that is,from electric rotation to magnetic rotation,occurs within one unit of spin at around Iπ=12+.Theoretical calculations based on the triaxial projected shell model consistently reproduce the experimental data and provide an explanation on the nature of observed phenomena such that the dynamical drift of the rotational axis suddenly from the principal axis to the tilted one,along the positive parity bands of106Ag.展开更多
基金National Science Foundation of China (40475028)a project from Key Laboratory of Meteorological Disaster of Jiangsu Province (KLME060210)
文摘Based on the data of 1950 – 1999 monthly global SST from Hadley Center, NCAR/NCEP reanalysis data and rainfall over 160 weather stations in China, investigation is conducted into the difference of summer rainfall in China (hereafter referred to as the "CS rainfall") between the years with the Indian Ocean Dipole (IOD) occurring independently and those with IOD occurring along with ENSO so as to study the effects of El Ni?o - Southern Oscillation (ENSO) on the relationship between IOD and the CS rainfall. It is shown that CS rainfall will be more than normal in South China (centered in Hunan province) in the years of positive IOD occurring independently; the CS rainfall will be less (more) than normal in North China (Southeast China) in the years of positive IOD occurring together with ENSO. The effect of ENSO is offsetting (enhancing) the relationship between IOD and summer rainfall in Southwest China, the region joining the Yangtze River basin with the Huaihe River basin (hereafter referred to as the "Yangtze-Huaihe basin") and North China (Southeast China). The circulation field is also examined for preliminary causes of such an influence.
基金supported by the NationalNatural Science Foundation of China(Grant Nos.10975191,10775184,10775182,10675171,10575133,11021504,11175258 and 11275068)the Chinese Major State Basic Research Development Program(Grant No.2007CB815005)
文摘The lifetimes for the states of magnetic dipole band in106Ag have been measured using the Doppler-shift attenuation method via the reaction of100Mo(11B,5n)106Ag at a beam energy of 60 MeV.The reduced transition strengths of the magnetic dipole band,the B(M1)/B(E2)ratios together with the signature of the level energy as a function of angular momentum for the positive parity states of106Ag show that a drastic change of excitation mode,that is,from electric rotation to magnetic rotation,occurs within one unit of spin at around Iπ=12+.Theoretical calculations based on the triaxial projected shell model consistently reproduce the experimental data and provide an explanation on the nature of observed phenomena such that the dynamical drift of the rotational axis suddenly from the principal axis to the tilted one,along the positive parity bands of106Ag.