The demand for energy consumption promotes to find more coal in deep underground up to 1 000 m and brings more serious situation of water disaster. As one of the major methods for water disaster control, hydrogeochemi...The demand for energy consumption promotes to find more coal in deep underground up to 1 000 m and brings more serious situation of water disaster. As one of the major methods for water disaster control, hydrogeochemistry attracts a series of studies related to water source discrimination. In this paper, a simple method for constructing the water source discrimination model based on major ions and multivariate statistical analysis was reported using the following procedures: (1) collection of data and interpretation, (2) analysis of controlling factors based on the chemical composition of groundwater, (3) "pure" sample chosen, and (4) discrimination model establishment. After the processes, two functions and a diagram were established for three aquifers (the Quaternary, Coal bearing, and Taiyuan Fm.) from the Renlou Coal Mine in northern Anhui Province, China. The method can be applied in almost all coal mines and can be used for evaluating the contribution ratios if the water is collected from a mixing source.展开更多
The maximal deoxynivalenol (DON) and fumonisins 131 + B2 (FUM) contents in cereals are dictated by the European regulation 1126/2007. The direct measurement of these mycotoxins is a tedious and expensive process....The maximal deoxynivalenol (DON) and fumonisins 131 + B2 (FUM) contents in cereals are dictated by the European regulation 1126/2007. The direct measurement of these mycotoxins is a tedious and expensive process. Our study is based on an alternative tool: near infrared spectroscopy. Different models were developed on 374 maize samples to predict their DON and FUM contents. Several parameters have been determined and used in a multivariate data analysis. Three models were developed: (1) a classification model based on Discriminant Factor Analysis (DFA), (2) a linear model based on ANalysis of COVAriance (ANCOVA) and (3) a Partial Least Squares Discriminant Analysis model (PLS-DA). Firstly, the performances of the DFA model for assessing DON and FUM risk were similar: 69 and 72% of the validation samples were respectively well classified. In the second part, the performances of the ANCOVA model for DON were higher than for FUM. The r2 was worth respectively 0.85 and 0.69. In the last part, the performances of the PLS-DA models were better for FUM than for DON. These results show that an evaluation of the mycotoxin risk is possible by analyzing selected kernel parameters measurable by secondary analytical such as near-infrared spectroscopy. Further work is needed to improve the models, adding more samples and using non linear approaches.展开更多
基金Supported by the National Natural Science Foundation of China (41173016)
文摘The demand for energy consumption promotes to find more coal in deep underground up to 1 000 m and brings more serious situation of water disaster. As one of the major methods for water disaster control, hydrogeochemistry attracts a series of studies related to water source discrimination. In this paper, a simple method for constructing the water source discrimination model based on major ions and multivariate statistical analysis was reported using the following procedures: (1) collection of data and interpretation, (2) analysis of controlling factors based on the chemical composition of groundwater, (3) "pure" sample chosen, and (4) discrimination model establishment. After the processes, two functions and a diagram were established for three aquifers (the Quaternary, Coal bearing, and Taiyuan Fm.) from the Renlou Coal Mine in northern Anhui Province, China. The method can be applied in almost all coal mines and can be used for evaluating the contribution ratios if the water is collected from a mixing source.
文摘The maximal deoxynivalenol (DON) and fumonisins 131 + B2 (FUM) contents in cereals are dictated by the European regulation 1126/2007. The direct measurement of these mycotoxins is a tedious and expensive process. Our study is based on an alternative tool: near infrared spectroscopy. Different models were developed on 374 maize samples to predict their DON and FUM contents. Several parameters have been determined and used in a multivariate data analysis. Three models were developed: (1) a classification model based on Discriminant Factor Analysis (DFA), (2) a linear model based on ANalysis of COVAriance (ANCOVA) and (3) a Partial Least Squares Discriminant Analysis model (PLS-DA). Firstly, the performances of the DFA model for assessing DON and FUM risk were similar: 69 and 72% of the validation samples were respectively well classified. In the second part, the performances of the ANCOVA model for DON were higher than for FUM. The r2 was worth respectively 0.85 and 0.69. In the last part, the performances of the PLS-DA models were better for FUM than for DON. These results show that an evaluation of the mycotoxin risk is possible by analyzing selected kernel parameters measurable by secondary analytical such as near-infrared spectroscopy. Further work is needed to improve the models, adding more samples and using non linear approaches.