本文证明了在准则Q(a,b,c)=(1/((a2+b2)~(1/2)))sum from i=1 to ∞(wi|axi+byi+c|=min)(wi>0,i=1,2,···,n)下,最优直线ax+by+c=0的存在性,并给出了最优直线应满足的两个必要条件,为具体求出确切的最优解提供了依据...本文证明了在准则Q(a,b,c)=(1/((a2+b2)~(1/2)))sum from i=1 to ∞(wi|axi+byi+c|=min)(wi>0,i=1,2,···,n)下,最优直线ax+by+c=0的存在性,并给出了最优直线应满足的两个必要条件,为具体求出确切的最优解提供了依据和方法.展开更多
全氮是土壤肥力的重要指标,对作物产量具有决定性作用,采用土壤可见-近红外(Vis-NIR)光谱预测技术及时获取土壤全氮含量信息具有重要意义。采用来自5省的450个土壤样本来验证局部加权回归方法(LWR)结合Vis-NIR光谱技术预测大面积土壤全...全氮是土壤肥力的重要指标,对作物产量具有决定性作用,采用土壤可见-近红外(Vis-NIR)光谱预测技术及时获取土壤全氮含量信息具有重要意义。采用来自5省的450个土壤样本来验证局部加权回归方法(LWR)结合Vis-NIR光谱技术预测大面积土壤全氮含量的适用性。结果表明,LWR模型的预测效果优于偏最小二乘回归(PLSR)、人工神经网络(ANN)和支持向量机(SVM),选取主成分数为5,相似样本为40时,模型验证的决定系数(RP2)为0.83,均方根误差(RMSEP)为0.25 g kg-1,测定值标准偏差与标准预测误差的比值(RPD)达到2.41。LWR从建模集中选取与验证样本相似的土样作为局部建模样本,降低了差别大的样本对模型的干扰,从而提高了模型的预测能力。因此,LWR建模方法通过大范围、大样本土壤光谱数据进行大尺度区域的全氮等土壤属性预测时能够发挥更好的作用。展开更多
文摘本文证明了在准则Q(a,b,c)=(1/((a2+b2)~(1/2)))sum from i=1 to ∞(wi|axi+byi+c|=min)(wi>0,i=1,2,···,n)下,最优直线ax+by+c=0的存在性,并给出了最优直线应满足的两个必要条件,为具体求出确切的最优解提供了依据和方法.
文摘全氮是土壤肥力的重要指标,对作物产量具有决定性作用,采用土壤可见-近红外(Vis-NIR)光谱预测技术及时获取土壤全氮含量信息具有重要意义。采用来自5省的450个土壤样本来验证局部加权回归方法(LWR)结合Vis-NIR光谱技术预测大面积土壤全氮含量的适用性。结果表明,LWR模型的预测效果优于偏最小二乘回归(PLSR)、人工神经网络(ANN)和支持向量机(SVM),选取主成分数为5,相似样本为40时,模型验证的决定系数(RP2)为0.83,均方根误差(RMSEP)为0.25 g kg-1,测定值标准偏差与标准预测误差的比值(RPD)达到2.41。LWR从建模集中选取与验证样本相似的土样作为局部建模样本,降低了差别大的样本对模型的干扰,从而提高了模型的预测能力。因此,LWR建模方法通过大范围、大样本土壤光谱数据进行大尺度区域的全氮等土壤属性预测时能够发挥更好的作用。