This work proved that biomass-based polyols (sorbitol, xylitol, erythritol, glycerol and ethanediol) were able to be converted into high-value chemical (p-xylene) by catalytic cracking of polyols, alkylation of aromat...This work proved that biomass-based polyols (sorbitol, xylitol, erythritol, glycerol and ethanediol) were able to be converted into high-value chemical (p-xylene) by catalytic cracking of polyols, alkylation of aromatics, and the isomerization of xylenes over the SiO2-modified zeolites. Compared to the conventional HZSM-5 zeolite, the SiO2-containing zeolites considerably increased the selectivity and yield of p-xylene due to the reduction of external surface acidity and the narrowing of pore entrance. The influences of the methanol additive, reaction temperature, and types of polyols on the selectivity and yield of p-xylene were investigated in detail. Catalytic cracking of polyols with methanol significantly enhanced the production of p-xylene by the alkylation of toluene with methanol. The highest p-xylene yield of 10.9 C-mol% with a p-xylene/xylenes ratio of 91.1% was obtained over the 15wt%SiO2/HZSM-5 catalyst. The reaction pathway for the formation of p-xylene was addressed according to the study of the key reactions and the characterization of catalysts.展开更多
Flexible Polyurethane (PU) foam is the material most widely used among urethanes. The foams were synthesized via the reaction of soy polyol, mixtures of isocyanates MDI:TDI (80:20), in the presence of water (bl...Flexible Polyurethane (PU) foam is the material most widely used among urethanes. The foams were synthesized via the reaction of soy polyol, mixtures of isocyanates MDI:TDI (80:20), in the presence of water (blowing agent) with molding process. This experiment was to analyze the physical properties of soy polyol and elaborate the principle of catalyst within the synthesis. The use of liquid and solid catalyst on the polyol synthesis results in significant cellular morphology and properties of polyurethane foam. It is found that the PU which was synthesized using bentonite catalyst has an irregular form of cell morphology, and it has higher density than using sulphuric acid catalyst.展开更多
OBJECTIVE To explore the potential neurotrophic effect of bone marrow stromal cells (BMSCs) on cell proliferation and committed neuronal differentiation of ventral mesencephalic precursors (VMPs) in vitro. METHODS...OBJECTIVE To explore the potential neurotrophic effect of bone marrow stromal cells (BMSCs) on cell proliferation and committed neuronal differentiation of ventral mesencephalic precursors (VMPs) in vitro. METHODS Ventral mesencephalic precursors from Ell inbred rat embryos and BMSCs from adult rats were cultured both separately and in co-culture. After a 7-day incubation in vitro, three conditioned culture media were obtained, termed VMP or common medium, BMSC medium, and BMSC±VMP medium. Ventral mesen- cephalic precursors cells were cultured in each of these media and the effects on proliferation and VMP differentiation were assessed. The relative yield of TH± cells was calculated and compared by immunocytochemical staining. RESULTS After a 7-day culture and induction of VMPs, the total cell counts were increased by (44.13±4.75)-fold (common), (60.63±5.25)-fold (BMSC), and (64.00±7.63)-fold (BMSC±VMP). The proportions of TH+ cells were (18.76±5.20)%, (23.49±4.10)%, and (28.08± 5.42)%, respectively, with statistically significant differences among the treatment groups. CONCLUSION BMSCs release factors that promote the proliferation of VMPs and facilitate the committed differentiation of VMPs into dopaminergic neurons.展开更多
基金supported by the National Key R&D Program of China (No.2018YFB1501404)
文摘This work proved that biomass-based polyols (sorbitol, xylitol, erythritol, glycerol and ethanediol) were able to be converted into high-value chemical (p-xylene) by catalytic cracking of polyols, alkylation of aromatics, and the isomerization of xylenes over the SiO2-modified zeolites. Compared to the conventional HZSM-5 zeolite, the SiO2-containing zeolites considerably increased the selectivity and yield of p-xylene due to the reduction of external surface acidity and the narrowing of pore entrance. The influences of the methanol additive, reaction temperature, and types of polyols on the selectivity and yield of p-xylene were investigated in detail. Catalytic cracking of polyols with methanol significantly enhanced the production of p-xylene by the alkylation of toluene with methanol. The highest p-xylene yield of 10.9 C-mol% with a p-xylene/xylenes ratio of 91.1% was obtained over the 15wt%SiO2/HZSM-5 catalyst. The reaction pathway for the formation of p-xylene was addressed according to the study of the key reactions and the characterization of catalysts.
文摘Flexible Polyurethane (PU) foam is the material most widely used among urethanes. The foams were synthesized via the reaction of soy polyol, mixtures of isocyanates MDI:TDI (80:20), in the presence of water (blowing agent) with molding process. This experiment was to analyze the physical properties of soy polyol and elaborate the principle of catalyst within the synthesis. The use of liquid and solid catalyst on the polyol synthesis results in significant cellular morphology and properties of polyurethane foam. It is found that the PU which was synthesized using bentonite catalyst has an irregular form of cell morphology, and it has higher density than using sulphuric acid catalyst.
基金This work was supported by grants from Natural Science Foundation of Jiangsu Province (No.BK2004043)
文摘OBJECTIVE To explore the potential neurotrophic effect of bone marrow stromal cells (BMSCs) on cell proliferation and committed neuronal differentiation of ventral mesencephalic precursors (VMPs) in vitro. METHODS Ventral mesencephalic precursors from Ell inbred rat embryos and BMSCs from adult rats were cultured both separately and in co-culture. After a 7-day incubation in vitro, three conditioned culture media were obtained, termed VMP or common medium, BMSC medium, and BMSC±VMP medium. Ventral mesen- cephalic precursors cells were cultured in each of these media and the effects on proliferation and VMP differentiation were assessed. The relative yield of TH± cells was calculated and compared by immunocytochemical staining. RESULTS After a 7-day culture and induction of VMPs, the total cell counts were increased by (44.13±4.75)-fold (common), (60.63±5.25)-fold (BMSC), and (64.00±7.63)-fold (BMSC±VMP). The proportions of TH+ cells were (18.76±5.20)%, (23.49±4.10)%, and (28.08± 5.42)%, respectively, with statistically significant differences among the treatment groups. CONCLUSION BMSCs release factors that promote the proliferation of VMPs and facilitate the committed differentiation of VMPs into dopaminergic neurons.