期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于复合多尺度等概率符号化样本熵的两相流动态特性分析
1
作者 孙庆明 巴頔 +2 位作者 钟林 王成龙 陈淑鑫 《大连理工大学学报》 CAS CSCD 北大核心 2024年第2期127-137,共11页
多尺度样本熵(MSE)在两相流动态特性分析中存在两点不足:一是熵值无法单纯反映时间序列信息增长速率,在高尺度下稳定性较差;二是传统粗粒化过程中有部分数据信息丢失.针对上述问题,提出复合多尺度等概率符号化样本熵(CMESSE),并通过对... 多尺度样本熵(MSE)在两相流动态特性分析中存在两点不足:一是熵值无法单纯反映时间序列信息增长速率,在高尺度下稳定性较差;二是传统粗粒化过程中有部分数据信息丢失.针对上述问题,提出复合多尺度等概率符号化样本熵(CMESSE),并通过对几种典型非线性时间序列进行分析验证了其有效性.与MSE相比,CMESSE不仅能够有效表征不同动力系统非线性时间序列复杂性,而且在时间序列较短时稳定性更好.在此基础上分析了123组流动条件下垂直上升管内空气-水两相流压差波动时间序列.研究结果表明,泡状流、塞状流及混状流的CMESSE变化趋势能够在不同尺度下定性表征不同流型的动态特性,CMESSE复杂性指数可跨多尺度定量描述不同流型的动力学复杂性. 展开更多
关键词 复合多尺度 符号 样本 两相流 动态特性
下载PDF
融合改进符号动态熵和随机配置网络的水电机组轴系故障诊断方法 被引量:10
2
作者 陈飞 王斌 +3 位作者 周东东 赵志高 丁晨 陈帝伊 《水利学报》 EI CSCD 北大核心 2022年第9期1127-1139,共13页
现有水电机组轴系故障诊断研究主要建立在单一传感器振动信号数据的基础上,存在故障信息缺失和传感器测点选择困难等问题。为此,提出了一种基于精细复合多元多尺度符号动态熵(RCMMSDE)和随机配置网络(SCN)相结合的水电机组轴系故障诊断... 现有水电机组轴系故障诊断研究主要建立在单一传感器振动信号数据的基础上,存在故障信息缺失和传感器测点选择困难等问题。为此,提出了一种基于精细复合多元多尺度符号动态熵(RCMMSDE)和随机配置网络(SCN)相结合的水电机组轴系故障诊断方法。首先,将精细复合技术引入RCMMSDE模型中,改进了传统多元多尺度熵粗粒化不足的问题。然后,通过提取水电机组不同传感器振动信号的RCMMSDE值作为故障特征。最终,将故障特征输入SCN网络实现水电机组轴系故障的准确识别。仿真结果表明,RCMMSDE-SCN模型在两个不同数据集上分别取得了97.58%和99.17%的诊断率,验证了所提模型具有良好的诊断性能。同时,对比不同诊断模型在多元传感器信号和单一传感器信号两种不同情景下的诊断情况,表明融合多元振动信号可以有效改善水电机组轴系故障诊断模型的识别性能。本研究为融合水电机组多元传感器振动信号故障诊断提供了一种新的方法,具有良好的借鉴价值。 展开更多
关键词 水电机组 故障诊断 多元多尺度符号动态熵 随机配置网络 特征提取
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部