In this paper, a geometric approach to fault detection and isolation (FDI) is applied to a Multiple-Input Multipie-Output (MIMO) model of a frame and the FDI results are compared to the ones obtained in the Single...In this paper, a geometric approach to fault detection and isolation (FDI) is applied to a Multiple-Input Multipie-Output (MIMO) model of a frame and the FDI results are compared to the ones obtained in the Single-Input Single-Output (SISO), Multiple-Input Single-Output (MISO), and Single-Input Multiple-Output (SIMO) cases. A proper distance function based on parameters obtained from parametric system identification method is used in the geometric approach. ARX (Auto Regressive with exogenous input) and VARX (Vector ARX) models with 12 parameters are used in all of the above-mentioned models. The obtained results reveal that by increasing the number of inputs, the classification errors reduce, even in the case of applying only one of the inputs in the computations. Furthermore, increasing the number of measured outputs in the FDI scheme results in decreasing classification errors. Also, it is shown that by using probabilistic space in the distance function, fault diagnosis scheme has better performance in comparison with the deterministic one.展开更多
In this research, a new fault detection method based on kernel independent component analysis (kernel ICA) is developed. Kernel ICA is an improvement of independent component analysis (ICA), and is different from ...In this research, a new fault detection method based on kernel independent component analysis (kernel ICA) is developed. Kernel ICA is an improvement of independent component analysis (ICA), and is different from kernel principal component analysis (KPCA) proposed for nonlinear process monitoring. The basic idea of our approach is to use the kernel ICA to extract independent components efficiently and to combine the selected essential independent components with process monitoring techniques. 12 (the sum of the squared independent scores) and squared prediction error (SPE) charts are adopted as statistical quantities. The proposed monitoring method is applied to Tennessee Eastman process, and the simulation results clearly show the advantages of kernel ICA monitoring in comparison to ICA monitoring.展开更多
With the increasing complexity of industrial processes, the high-dimensional industrial data exhibit a strong nonlinearity, bringing considerable challenges to the fault diagnosis of industrial processes. To efficient...With the increasing complexity of industrial processes, the high-dimensional industrial data exhibit a strong nonlinearity, bringing considerable challenges to the fault diagnosis of industrial processes. To efficiently extract deep meaningful features that are crucial for fault diagnosis, a sparse Gaussian feature extractor(SGFE) is designed to learn a nonlinear mapping that projects the raw data into the feature space with the fault label dimension. The feature space is described by the one-hot encoding of the fault category label as an orthogonal basis. In this way, the deep sparse Gaussian features related to fault categories can be gradually learned from the raw data by SGFE. In the feature space,the sparse Gaussian(SG) loss function is designed to constrain the distribution of features to multiple sparse multivariate Gaussian distributions. The sparse Gaussian features are linearly separable in the feature space, which is conducive to improving the accuracy of the downstream fault classification task. The feasibility and practical utility of the proposed SGFE are verified by the handwritten digits MNIST benchmark and Tennessee-Eastman(TE) benchmark process,respectively.展开更多
文摘In this paper, a geometric approach to fault detection and isolation (FDI) is applied to a Multiple-Input Multipie-Output (MIMO) model of a frame and the FDI results are compared to the ones obtained in the Single-Input Single-Output (SISO), Multiple-Input Single-Output (MISO), and Single-Input Multiple-Output (SIMO) cases. A proper distance function based on parameters obtained from parametric system identification method is used in the geometric approach. ARX (Auto Regressive with exogenous input) and VARX (Vector ARX) models with 12 parameters are used in all of the above-mentioned models. The obtained results reveal that by increasing the number of inputs, the classification errors reduce, even in the case of applying only one of the inputs in the computations. Furthermore, increasing the number of measured outputs in the FDI scheme results in decreasing classification errors. Also, it is shown that by using probabilistic space in the distance function, fault diagnosis scheme has better performance in comparison with the deterministic one.
基金Shanghai Leading Academic Discipline Project,China(No.B504) Key Laboratory of Advanced Control and Optimization for Chemical Processes,Ministry of Education,China
文摘In this research, a new fault detection method based on kernel independent component analysis (kernel ICA) is developed. Kernel ICA is an improvement of independent component analysis (ICA), and is different from kernel principal component analysis (KPCA) proposed for nonlinear process monitoring. The basic idea of our approach is to use the kernel ICA to extract independent components efficiently and to combine the selected essential independent components with process monitoring techniques. 12 (the sum of the squared independent scores) and squared prediction error (SPE) charts are adopted as statistical quantities. The proposed monitoring method is applied to Tennessee Eastman process, and the simulation results clearly show the advantages of kernel ICA monitoring in comparison to ICA monitoring.
基金Projects(62125306, 62133003) supported by the National Natural Science Foundation of ChinaProject(TPL2019C03) supported by the Open Fund of Science and Technology on Thermal Energy and Power Laboratory,ChinaProject supported by the Fundamental Research Funds for the Central Universities(Zhejiang University NGICS Platform),China。
文摘With the increasing complexity of industrial processes, the high-dimensional industrial data exhibit a strong nonlinearity, bringing considerable challenges to the fault diagnosis of industrial processes. To efficiently extract deep meaningful features that are crucial for fault diagnosis, a sparse Gaussian feature extractor(SGFE) is designed to learn a nonlinear mapping that projects the raw data into the feature space with the fault label dimension. The feature space is described by the one-hot encoding of the fault category label as an orthogonal basis. In this way, the deep sparse Gaussian features related to fault categories can be gradually learned from the raw data by SGFE. In the feature space,the sparse Gaussian(SG) loss function is designed to constrain the distribution of features to multiple sparse multivariate Gaussian distributions. The sparse Gaussian features are linearly separable in the feature space, which is conducive to improving the accuracy of the downstream fault classification task. The feasibility and practical utility of the proposed SGFE are verified by the handwritten digits MNIST benchmark and Tennessee-Eastman(TE) benchmark process,respectively.