期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于KPCA-GG的火力发电设备状态诊断方法
被引量:
3
1
作者
汪国新
郝勇生
苏志刚
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2019年第3期542-548,共7页
为了解决具有非线性特征的设备状态诊断问题,提出一种基于核主成分分析和Gath-Geva模糊聚类相结合的多元时序分割算法.根据Gath-Geva模糊聚类算法得到聚类结果,利用核主成分分析算法提取非线性特征,从而构造KPCA分析模型.将聚类类簇在...
为了解决具有非线性特征的设备状态诊断问题,提出一种基于核主成分分析和Gath-Geva模糊聚类相结合的多元时序分割算法.根据Gath-Geva模糊聚类算法得到聚类结果,利用核主成分分析算法提取非线性特征,从而构造KPCA分析模型.将聚类类簇在该模型空间中的距离作为类簇相似性分析及合并的标准,以提升方法的分割效果.实验结果表明,基于KPCA的Gath-Geva模糊聚类算法能识别数据的非线性信息,更准确地分析数据特征,其分割效果优于基于主成分分析的聚类算法的分割效果.通过提取的非线性特征对数据进行分割有助于识别设备状态的转换,可用于解决一类具有非线性特点的火力发电设备过程状态诊断问题.
展开更多
关键词
核主成分分析
多元时间序列分割
Gath-Geva模糊聚类算法
火力发电设备
下载PDF
职称材料
题名
基于KPCA-GG的火力发电设备状态诊断方法
被引量:
3
1
作者
汪国新
郝勇生
苏志刚
机构
东南大学计算机科学与工程学院
东南大学能源与环境学院
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2019年第3期542-548,共7页
基金
国家自然科学基金面上资助项目(51876035)
文摘
为了解决具有非线性特征的设备状态诊断问题,提出一种基于核主成分分析和Gath-Geva模糊聚类相结合的多元时序分割算法.根据Gath-Geva模糊聚类算法得到聚类结果,利用核主成分分析算法提取非线性特征,从而构造KPCA分析模型.将聚类类簇在该模型空间中的距离作为类簇相似性分析及合并的标准,以提升方法的分割效果.实验结果表明,基于KPCA的Gath-Geva模糊聚类算法能识别数据的非线性信息,更准确地分析数据特征,其分割效果优于基于主成分分析的聚类算法的分割效果.通过提取的非线性特征对数据进行分割有助于识别设备状态的转换,可用于解决一类具有非线性特点的火力发电设备过程状态诊断问题.
关键词
核主成分分析
多元时间序列分割
Gath-Geva模糊聚类算法
火力发电设备
Keywords
kernel principal component analysis (KPCA)
multivariate time series segmentation
Gath-Geva fuzzy clustering
thermal power generation equipment
分类号
TP274 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于KPCA-GG的火力发电设备状态诊断方法
汪国新
郝勇生
苏志刚
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2019
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部