The thermal decomposition characteristics of methyl oleate were preliminarily investigated under nitrogen atmo-sphere by a thermogravimetric analyzer when the ester was heated at a heating rate of 10℃/min from room t...The thermal decomposition characteristics of methyl oleate were preliminarily investigated under nitrogen atmo-sphere by a thermogravimetric analyzer when the ester was heated at a heating rate of 10℃/min from room temperature to 600℃. Furthermore, the pyrolytic and kinetic characteristics of methyl oleate were intensively studied at different heating rates. The gaseous species obtained during thermal decomposition were also identiifed by the TG-FTIR coupling analysis. The results showed that the pyrolysis of methyl oleate proceeded in three stages, viz. the drying stage, the main pyrolysis stage and the residual pyrolysis stage. The initial decomposition temperature, the maximum weight loss temperature, the peak decomposition temperature and the rate of maximum weight loss of methyl oleate increased with the increasing heating rates. Gaseous CO, CO2 and H2O were the typical decomposition products from pyrolysis of methyl oleate. In addition, a kinetic model for thermal decomposition of methyl oleate was built up based on the experimental results using the Coats-Redfern integral method and the multiplelinear regression method. The activation energy, the preexponential factor, the reaction order and the kinetic equation for thermal decomposition of methyl oleate were obtained. Comparison of the experimental data with the calculated ones and analysis of statistical errors of pyrolysis ratios demonstrated that the kinetic model was reliable for studying the pyrolysis of methyl oleate. Finally, the kinetic compensation effect between the preexponential factors and the activation energy in the pyrolysis of methyl oleate was also conifrmed.展开更多
The middle class in metropolitan Chinese cities has become an important social group. With the rapid development of urbanization and constant advancement of suburbanization, the middle class has increasingly come to i...The middle class in metropolitan Chinese cities has become an important social group. With the rapid development of urbanization and constant advancement of suburbanization, the middle class has increasingly come to influence city traffic. Research into middle-class commuting activities thus has practical significance for improving traffic congestion and reducing the commuting burden in metropolitan cities. Based on a dataset formed by 816 completed surveys, this paper analyzes the commuting mode, time and distance of middle-class residents in Guangzhou City using the descriptive statistical method. The results indicate that private cars are the main commuting mode, followed by public transport. Meanwhile, middle-class residents mainly undertake medium-short time and medium-short distance commuting. The study subsequently uses multilevel logistic regression and multiple linear regression models to analyze the factors that influence commuting mode choice, time and distance. The gender, age, number of family cars, housing source and jobs-housing balance are the most important factors influencing commuting mode choice; housing, population density, jobs-housing balance and commuting mode significantly affect commuting time; and transport accessibility, jobs-housing balance and commuting mode are the notable factors affecting commuting distance. Finally, this paper analyzes what is affecting the commuting activities of middle-class residents and determines the differences in commuting activity characteristics and influence factors between middle-class and ordinary residents. Policy suggestions to improve urban planning and urban management are also proposed.展开更多
In order to investigate the energy absorption characteristics of multi-cell polygonal tubes with different cross-sectional configurations,firstly,the theoretical formulae of the mean crushing force under axial load fo...In order to investigate the energy absorption characteristics of multi-cell polygonal tubes with different cross-sectional configurations,firstly,the theoretical formulae of the mean crushing force under axial load for four multi-cell polygonal tubes were derived by combining the Super Folding Element theory with Zhang’s research results.These formulae can be used to validate the numerical model and quickly evaluate the energy absorption ability of multi-cell polygonal tubes.Furthermore,a comparative study on the energy absorption performance of eight multi-cell polygonal tubes under axial and oblique loads was conducted.The results show that all tubes have a stable mixed deformation mode under axial load.The multi-cell decagon tube has better energy-absorption ability compared with other tubes.Whenθis less than 10°,all the tubes maintain a stable deformation mode,and the multi-cell decagon tube also has the biggest crushing force efficiency and specific energy absorption among these eight tubes;meanwhile compared with the results atθ=0°,the specific energy absorption of all tubes decreases by about 8%-21%,while the crushing force efficiency increases by 20%-56%.However,at large angles 20°and 30°,all of the tubes collapse in bending modes and lose their effectiveness at energy absorption.展开更多
基金the financial support provided by the National Natural Science Foundation of China(Project No.51375491)the Natural Science Foundation of Chongqing(No.CSTC,2014 JCYAA 50021)
文摘The thermal decomposition characteristics of methyl oleate were preliminarily investigated under nitrogen atmo-sphere by a thermogravimetric analyzer when the ester was heated at a heating rate of 10℃/min from room temperature to 600℃. Furthermore, the pyrolytic and kinetic characteristics of methyl oleate were intensively studied at different heating rates. The gaseous species obtained during thermal decomposition were also identiifed by the TG-FTIR coupling analysis. The results showed that the pyrolysis of methyl oleate proceeded in three stages, viz. the drying stage, the main pyrolysis stage and the residual pyrolysis stage. The initial decomposition temperature, the maximum weight loss temperature, the peak decomposition temperature and the rate of maximum weight loss of methyl oleate increased with the increasing heating rates. Gaseous CO, CO2 and H2O were the typical decomposition products from pyrolysis of methyl oleate. In addition, a kinetic model for thermal decomposition of methyl oleate was built up based on the experimental results using the Coats-Redfern integral method and the multiplelinear regression method. The activation energy, the preexponential factor, the reaction order and the kinetic equation for thermal decomposition of methyl oleate were obtained. Comparison of the experimental data with the calculated ones and analysis of statistical errors of pyrolysis ratios demonstrated that the kinetic model was reliable for studying the pyrolysis of methyl oleate. Finally, the kinetic compensation effect between the preexponential factors and the activation energy in the pyrolysis of methyl oleate was also conifrmed.
基金Under the auspices of National Natural Science Foundation of China(No.41271182)
文摘The middle class in metropolitan Chinese cities has become an important social group. With the rapid development of urbanization and constant advancement of suburbanization, the middle class has increasingly come to influence city traffic. Research into middle-class commuting activities thus has practical significance for improving traffic congestion and reducing the commuting burden in metropolitan cities. Based on a dataset formed by 816 completed surveys, this paper analyzes the commuting mode, time and distance of middle-class residents in Guangzhou City using the descriptive statistical method. The results indicate that private cars are the main commuting mode, followed by public transport. Meanwhile, middle-class residents mainly undertake medium-short time and medium-short distance commuting. The study subsequently uses multilevel logistic regression and multiple linear regression models to analyze the factors that influence commuting mode choice, time and distance. The gender, age, number of family cars, housing source and jobs-housing balance are the most important factors influencing commuting mode choice; housing, population density, jobs-housing balance and commuting mode significantly affect commuting time; and transport accessibility, jobs-housing balance and commuting mode are the notable factors affecting commuting distance. Finally, this paper analyzes what is affecting the commuting activities of middle-class residents and determines the differences in commuting activity characteristics and influence factors between middle-class and ordinary residents. Policy suggestions to improve urban planning and urban management are also proposed.
基金Projects(U1334208,51405516,51275532)supported by the National Natural Science Foundation of ChinaProjects(2015zzts210,2016zzts331)supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to investigate the energy absorption characteristics of multi-cell polygonal tubes with different cross-sectional configurations,firstly,the theoretical formulae of the mean crushing force under axial load for four multi-cell polygonal tubes were derived by combining the Super Folding Element theory with Zhang’s research results.These formulae can be used to validate the numerical model and quickly evaluate the energy absorption ability of multi-cell polygonal tubes.Furthermore,a comparative study on the energy absorption performance of eight multi-cell polygonal tubes under axial and oblique loads was conducted.The results show that all tubes have a stable mixed deformation mode under axial load.The multi-cell decagon tube has better energy-absorption ability compared with other tubes.Whenθis less than 10°,all the tubes maintain a stable deformation mode,and the multi-cell decagon tube also has the biggest crushing force efficiency and specific energy absorption among these eight tubes;meanwhile compared with the results atθ=0°,the specific energy absorption of all tubes decreases by about 8%-21%,while the crushing force efficiency increases by 20%-56%.However,at large angles 20°and 30°,all of the tubes collapse in bending modes and lose their effectiveness at energy absorption.