针对传统医疗图像误差预测算法无法很好的选择图像特征,存在图像误差预测值与实际值拟合度低、预测耗时长等问题,提出基于卷积神经网络与特征选择的医疗图像误差预测算法.首先,选取5种集成规则构建自适应多分类器,对医疗图像区域进行分...针对传统医疗图像误差预测算法无法很好的选择图像特征,存在图像误差预测值与实际值拟合度低、预测耗时长等问题,提出基于卷积神经网络与特征选择的医疗图像误差预测算法.首先,选取5种集成规则构建自适应多分类器,对医疗图像区域进行分类;其次,训练卷积神经网络,利用训练完成的神经网络提取不同类别医疗图像区域特征,以此为基础计算区域距离,寻找出相似度最小的区域,完成图像可疑区域定位;再次,融合多评价标准生成特征子集,从中搜索得到最优特征子集,完成可疑区域图像特征选择;最后,以选择得到的特征区域像素点作为训练样本,建立预测样本与训练样本之间的多元线性回归矩阵,实现误差预测.实验结果表明,所提算法的集成规则适应度较高,分类性能好,区域距离计算准确率高达95%左右,特征选择的AUC值(Area Under Curve)高,且预测结果拟合度和预测耗时均优于传统算法.展开更多
文摘针对传统医疗图像误差预测算法无法很好的选择图像特征,存在图像误差预测值与实际值拟合度低、预测耗时长等问题,提出基于卷积神经网络与特征选择的医疗图像误差预测算法.首先,选取5种集成规则构建自适应多分类器,对医疗图像区域进行分类;其次,训练卷积神经网络,利用训练完成的神经网络提取不同类别医疗图像区域特征,以此为基础计算区域距离,寻找出相似度最小的区域,完成图像可疑区域定位;再次,融合多评价标准生成特征子集,从中搜索得到最优特征子集,完成可疑区域图像特征选择;最后,以选择得到的特征区域像素点作为训练样本,建立预测样本与训练样本之间的多元线性回归矩阵,实现误差预测.实验结果表明,所提算法的集成规则适应度较高,分类性能好,区域距离计算准确率高达95%左右,特征选择的AUC值(Area Under Curve)高,且预测结果拟合度和预测耗时均优于传统算法.