期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
多元线性回归系数的求解原理与矩阵初等变换的应用 被引量:4
1
作者 曹昭 《统计与决策》 CSSCI 北大核心 2015年第17期74-76,共3页
多元线性回归是非常重要的一种统计方法,文章详细阐述线性回归系数的计算方法并把矩阵初等变换的知识运用于多元线性回归模型假定的基本检验,有着重要的理论与实践意义。
关键词 矩阵初等变换 最小二乘原理 多元线性回归系数
下载PDF
多元线性回归系数的随机加权M-估计
2
作者 梁淑云 王文植 《重庆交通学院学报》 1994年第2期105-113,共9页
本文讨论了由随机加权最小问题的解定义的多元线性回归系数的随机加权M-估计的相合性、渐近正态性,参数检验及时非随机加权M-估计分布的Bootstrap逼近。
关键词 多元线性回归系数 随机加权M-估计 渐近正态性 相合性
下载PDF
求解多元多重线性回归系数的BP算法
3
作者 肖浩 刘次华 余启港 《中南民族学院学报(自然科学版)》 CAS 2001年第1期46-49,共4页
提出了一种基于 SCNN的求解多元线性回归系数的改正的 BP算法 .该算法的基本思想是先将回归系数的估计转化为求相应线性方程组的最小二乘解 ;然后用 BP算法求得方程组系数矩阵的左逆阵 ,得到方程组的解 .算法中不存在除法运算 。
关键词 多元线性回归系数 最小二乘解 结构可控 多层神经网络 BP算法 线性方程组 系数矩阵
下载PDF
Performance of the geometric approach to fault detection and isolation in SISO,MISO,SIMO and MIMO systems 被引量:2
4
作者 RAHIMI N. SADEGHI M. H. MAHJOOB M. J. 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第9期1443-1451,共9页
In this paper, a geometric approach to fault detection and isolation (FDI) is applied to a Multiple-Input Multipie-Output (MIMO) model of a frame and the FDI results are compared to the ones obtained in the Single... In this paper, a geometric approach to fault detection and isolation (FDI) is applied to a Multiple-Input Multipie-Output (MIMO) model of a frame and the FDI results are compared to the ones obtained in the Single-Input Single-Output (SISO), Multiple-Input Single-Output (MISO), and Single-Input Multiple-Output (SIMO) cases. A proper distance function based on parameters obtained from parametric system identification method is used in the geometric approach. ARX (Auto Regressive with exogenous input) and VARX (Vector ARX) models with 12 parameters are used in all of the above-mentioned models. The obtained results reveal that by increasing the number of inputs, the classification errors reduce, even in the case of applying only one of the inputs in the computations. Furthermore, increasing the number of measured outputs in the FDI scheme results in decreasing classification errors. Also, it is shown that by using probabilistic space in the distance function, fault diagnosis scheme has better performance in comparison with the deterministic one. 展开更多
关键词 Fault detection and isolation (FDI) Multivariate systems Parametric system identification Linear regression Distance functions
下载PDF
Characteristics of ventilation coefficient and its impact on urban air pollution 被引量:1
5
作者 路婵 邓启红 +2 位作者 刘蔚巍 黄柏良 石灵芝 《Journal of Central South University》 SCIE EI CAS 2012年第3期615-622,共8页
The temporal variation of ventilation coefficient was estimated and a simple model for the prediction of urban ventilation coefficient in Changsha was developed. Firstly, Pearson correlation analysis was used to inves... The temporal variation of ventilation coefficient was estimated and a simple model for the prediction of urban ventilation coefficient in Changsha was developed. Firstly, Pearson correlation analysis was used to investigate the relationship between meteorological parameters and mixing layer height during 2005-2009 in Changsha, China. Secondly, the multi-linear regression model between daytime and nighttime was adopted to predict the temporal ventilation coefficient. Thirdly, the validation of the model between the predicted and observed ventilation coefficient in 2010 was conducted. The results showed that ventilation coefficient significantly varied and remained high during daytime, while it stayed relatively constant and low during nighttime. In addition, the diurnal ventilation coefficient was distinctly negatively correlated with PM10 (particle with the diameter less than 10 μm) concentration in Changsha, China. The predicted ventilation coefficient agreed well with the observed values based on the multi-linear regression models during daytime and nighttime. The urban temporal ventilation coefficient could be accurately predicted by some simple meteorological parameters during daytime and nighttime. The ventilation coefficient played an important role in the PM10 concentration level. 展开更多
关键词 ventilation coefficient mixing layer height particulate matter multi-linear regression
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部