期刊文献+
共找到464篇文章
< 1 2 24 >
每页显示 20 50 100
基于通道信息不平衡度的多元经验模态分解方法
1
作者 陆春元 焦洪宇 卜王辉 《机电工程》 CAS 北大核心 2024年第2期280-288,共9页
在轴承多通道振动信号中,由于多通道故障信息不平衡会导致轴承故障诊断精度降低。针对这一问题,提出了一种考虑多通道故障信息不平衡的,基于多元经验模态分解(MEMD)的轴承故障特征提取与诊断方法。首先,分析了传统MEMD随机选择映射方向... 在轴承多通道振动信号中,由于多通道故障信息不平衡会导致轴承故障诊断精度降低。针对这一问题,提出了一种考虑多通道故障信息不平衡的,基于多元经验模态分解(MEMD)的轴承故障特征提取与诊断方法。首先,分析了传统MEMD随机选择映射方向的缺陷,设计了依据通道间故障信息不平衡度自适应调整映射方向的策略,使分量信号中包含更多故障信息,并基于多元模态分解结果构造了特征空间;然后,基于冗余属性投影法对多通道提取的故障特征进行了融合,得到了多通道融合的本质故障特征;最后,采用反向传播(BP)神经网络进行了故障模式识别,设计了三层神经网络结构,且使用误差反向传播法进行了参数训练,并制定了基于BP神经网络的轴承故障诊断流程。研究结果表明:改进MEMD提取特征的类边界比传统方法更加明确,说明改进方法能够提取更具代表性的故障特征;从诊断精度看,与传统多元模态分解方法、完备集成辛几何分解方法相比,改进MEMD方法的诊断准确率最高,达到了99.5%。实验结果验证了改进方法在多通道故障诊断中是可行的,且从诊断精度上看,其具有一定的先进性。 展开更多
关键词 轴承故障特征提取与诊断 多通道采样 信息不平衡 多元经验模态分解 冗余属性投影 反向传播(BP)神经网络 特征空间构造 本质故障特征
下载PDF
基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型
2
作者 唐非 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期735-744,共10页
针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后... 针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后,利用信息熵和近似熵来判定各分量的复杂度,高复杂度分量选择最小二乘支持向量机、低复杂度分量选择随机配置网络作为对应的预测模型。利用Stacking算法对每个模型的预测值进行融合,使预测精度得到提升。最后,通过一组实际的短期风速数据作为研究对象,将提出的预测模型应用于其预测。对比结果表明,所提预测模型可提高短期风速的预测精度。 展开更多
关键词 风能 短期风速 组合预测 互补集成经验模态分解 模型 Stacking融合
下载PDF
基于多元经验模态分解的风电并网系统次同步振荡检测
3
作者 于鹏 郭国先 +1 位作者 杨晓明 刘颖明 《可再生能源》 CAS CSCD 北大核心 2024年第6期781-788,共8页
随着风电的大规模并网,电力系统次同步振荡(SSO)事件频发,严重威胁电网的安全稳定运行。实现风电并网系统SSO的准确检测,对保障系统稳定运行具有重要意义。现有的基于量测数据的SSO检测方法多为单通道方法,难以兼顾系统全局SSO特性。为... 随着风电的大规模并网,电力系统次同步振荡(SSO)事件频发,严重威胁电网的安全稳定运行。实现风电并网系统SSO的准确检测,对保障系统稳定运行具有重要意义。现有的基于量测数据的SSO检测方法多为单通道方法,难以兼顾系统全局SSO特性。为此,文章提出了一种基于多元经验模态分解(MEMD)的风电并网系统SSO检测方法。首先,对风电并网点量测数据进行多元经验模态分解,进而借助Teager-Kaiser能量算子(TKEO)筛选出含SSO模式的IMF分量;然后,采用希尔伯特黄变换(HHT)辨识次同步振荡频率及阻尼比;最后,结合改进的4机2区域测试系统的仿真数据对所提SSO检测方法进行测试,结果验证了所提方法的有效性。 展开更多
关键词 次同步振荡检测 量测信息 多元经验模态分解 Teager-Kaiser能量算子 希尔伯特黄变换
下载PDF
模态分解及混合模型在比特币价格预测中的应用
4
作者 周健 刘辉 《太原师范学院学报(自然科学版)》 2024年第3期15-24,共10页
独特的生产、发行和交易机制等多种因素的影响下,比特币价格表现出极端的波动性,导致了预测任务的复杂性.为此提出了基于改进的自适应噪声完备集合经验模态分解(ICEEMDAN)的混合预测模型,将复杂的原始序列分解成多个简单固有模态函数(IM... 独特的生产、发行和交易机制等多种因素的影响下,比特币价格表现出极端的波动性,导致了预测任务的复杂性.为此提出了基于改进的自适应噪声完备集合经验模态分解(ICEEMDAN)的混合预测模型,将复杂的原始序列分解成多个简单固有模态函数(IMFs),并通过重构算法将IMFs集成为不同频率的分量.根据各分量的不同数据模式,选取不同机器学习模型分别进行预测,叠加各分量预测结果得到最终比特币价格预测结果.对比结果表明,该模型在各评价指标上均优于单一预测模型,混合模型可以优化预测结果,较好地减小预测误差. 展开更多
关键词 比特币价格预测 改进经验模态分解 混合模型 机器学习
下载PDF
基于自适应投影多元经验模态分解的电力系统强迫振荡源定位 被引量:5
5
作者 姜涛 刘博涵 +1 位作者 李雪 李国庆 《电工技术学报》 EI CSCD 北大核心 2023年第13期3527-3538,共12页
近年来,电力系统强迫振荡在电网中频繁发生,严重威胁到电网的安全稳定运行,快速、准确地定位强迫振荡源对抑制强迫振荡具有重要意义,但现有方法在分解具有高差异度多通道广域量测信息时难以准确提取强迫振荡模式分量,严重影响到强迫振... 近年来,电力系统强迫振荡在电网中频繁发生,严重威胁到电网的安全稳定运行,快速、准确地定位强迫振荡源对抑制强迫振荡具有重要意义,但现有方法在分解具有高差异度多通道广域量测信息时难以准确提取强迫振荡模式分量,严重影响到强迫振荡源定位精度。为此,该文提出一种基于自适应投影多元经验模态分解(APIT-MEMD)的强迫振荡源定位方法。该方法首先采用APIT-MEMD通过构建自适应投影方向向量,实现对发电机多通道广域量测信息的同步分解,分离出表征不同振荡模式的固有模态函数(IMF)分量;然后,借助对数能量熵从众多IMF分量中提取出含强迫振荡模式的IMF分量;在此基础上,根据提取出的强迫振荡IMF分量,计算各发电机的耗散能量流,根据耗散能量流实现强迫振荡源定位;最后,通过WECC 179节点测试系统仿真数据和实际电网同步相量测量装置(PMU)实测数据对所提方法进行分析、验证,结果验证了所提方法的准确性和实用性。 展开更多
关键词 电力系统 强迫振荡 振荡源定位 自适应投影多元经验模态分解 固有模态函数 耗散能量流
下载PDF
基于多元经验模态分解与卷积神经网络的气液两相流流型识别 被引量:5
6
作者 张立峰 王智 《计量学报》 CSCD 北大核心 2023年第1期73-79,共7页
提出了一种基于多元经验模态分解(MEMD)与卷积神经网络(CNN)的垂直管道气液两相流流型识别方法。该方法基于数字化电阻层析成像(ERT)系统采集的测量数据,预处理后进行MEMD分析,通过求取各分量与原始信号的皮尔逊相关系数选取本征模函数(... 提出了一种基于多元经验模态分解(MEMD)与卷积神经网络(CNN)的垂直管道气液两相流流型识别方法。该方法基于数字化电阻层析成像(ERT)系统采集的测量数据,预处理后进行MEMD分析,通过求取各分量与原始信号的皮尔逊相关系数选取本征模函数(IMFs)并求解Hilbert边际谱,提取Hilbert边际谱的标准差与均值作为卷积神经网络(CNN)输入以识别流型。结果表明,该方法能够有效识别泡状流、弹状流、段塞流,平均识别准确率可达96.43%。 展开更多
关键词 计量学 流型识别 电阻层析成像 多元经验模态分解 卷积神经网络
下载PDF
基于多元经验模态分解的可见/近红外光谱识别木材研究 被引量:5
7
作者 付立岩 冯国红 刘旭铭 《森林工程》 北大核心 2023年第4期101-109,共9页
基于可见/近红外光谱技术探究一种快速、准确的木材识别方法。以8种进口木材为研究对象,运用多元经验模态分解(MEMD)和最大互信息系数(MIC)的方法对采集的光谱数据进行分解、筛选和重构,进而利用连续投影法(SPA)进行特征波段提取,再结合... 基于可见/近红外光谱技术探究一种快速、准确的木材识别方法。以8种进口木材为研究对象,运用多元经验模态分解(MEMD)和最大互信息系数(MIC)的方法对采集的光谱数据进行分解、筛选和重构,进而利用连续投影法(SPA)进行特征波段提取,再结合XGBoost分类器进行分类识别。为进一步验证该方法的可行性,将提出的木材识别方法分别与经验模态分解(EMD)算法和传统的支持向量机(SVM)、K近邻分类算法(KNN)、BP神经网络(Back Propagation Neuron NetWok)分类器进行对比分析。结果表明,MEMD方法对可见/近红外光谱去噪效果优于EMD去噪方法;MEMD-SPA-XGBoost相比MEMD-SPA-SVM的识别准确率为90%、MEMD-SPA-KNN的88%、MEMD-SPA-BP的89.2%,平均识别准确率达到了96.5%。可见,该方法在木材识别方法中具有很好的应用前景。 展开更多
关键词 可见/近红外光谱 木材识别 多元经验模态分解 连续投影法 XGBoost
下载PDF
基于集合经验模态分解与能量熵的水库群蓄水时期梯级水电调度模型 被引量:1
8
作者 郭希海 徐峥 +2 位作者 安丰强 刘红叶 张淼 《河南科学》 2023年第6期801-808,共8页
提出基于集合经验模态分解与能量熵的水库群蓄水时期梯级水电调度模型,以满足梯级水库群的蓄水、发电目标.对蓄水时期水库群的径流监测信号时间序列作集合经验模态分解,获得含有各尺度局部细节特征的IMF及剩余分量,基于能量熵理论完成... 提出基于集合经验模态分解与能量熵的水库群蓄水时期梯级水电调度模型,以满足梯级水库群的蓄水、发电目标.对蓄水时期水库群的径流监测信号时间序列作集合经验模态分解,获得含有各尺度局部细节特征的IMF及剩余分量,基于能量熵理论完成各分量的重构,将重构结果作为最小二乘支持向量机的输入,利用粒子群算法优化预测模型参数,实现梯级水库群径流精准预测.依据径流预测结果,构建以发电量最高、蓄满率最大、弃水量最低作为优化目标,并满足蓄水量、泄水量、出力、水量平衡、关联方程约束的水电调度模型,实现水库群蓄水时期梯级水电调度优化.实验结果表明:该模型可实现径流监测信号时间序列的分解与重构,径流预测误差在[0.09,5.2]区间;优化调度后,梯级水库群的发电量提升了3.66%,弃水量降低了27.91%,蓄满率增大了1.85%. 展开更多
关键词 集合经验模态分解 能量熵 水库群 水电调度模型 蓄满率 弃水量
下载PDF
融合新闻影响力衰减的碳价格多元分解集成预测
9
作者 张大斌 黄均杰 +1 位作者 凌立文 胡焕玲 《河南科技大学学报(自然科学版)》 CAS 北大核心 2024年第1期51-61,M0005,M0006,共13页
新闻数据涵盖了与碳价格密切相关的政策、经济和能源等信息,对碳价格的影响具有时效性。为量化新闻影响力的衰减程度,基于词频统计和指数衰减对新闻数据提取特征,提出了1种新闻影响力衰减时间序列的计算方法,新闻的衰减效应更准确地反... 新闻数据涵盖了与碳价格密切相关的政策、经济和能源等信息,对碳价格的影响具有时效性。为量化新闻影响力的衰减程度,基于词频统计和指数衰减对新闻数据提取特征,提出了1种新闻影响力衰减时间序列的计算方法,新闻的衰减效应更准确地反映新闻对碳价格的影响程度。为提高预测精度,构建了融合新闻影响力衰减的碳价格多元分解集成预测模型,运用噪声辅助多元经验模态分解方法对碳价格和新闻数据进行多元分解,基于样本熵重构分量,使用机器学习方法对分量进行预测,加和集成得到预测结果。以湖北省碳价格为例进行实证分析。结果表明:新闻影响力指数衰减方法能有效刻画新闻与碳价格的相关性,多元分解集成模型表现出优异且稳定的预测性能。 展开更多
关键词 碳价格预测 新闻影响力 指数衰减 噪声辅助多元经验模态分解 样本熵
下载PDF
基于经验模态分解和支持向量机的日径流预测研究 被引量:1
10
作者 万新宇 王鑫宇 +1 位作者 侯添甜 林晓梦 《水力发电》 CAS 2023年第10期39-44,共6页
准确的径流预测是水资源开发利用的重要依据,但预测难度大。为提高日径流预测精度,以榕江流域南河东桥园站日径流为例,建立了经验模态分解(EMD)和支持向量机(SVM)耦合的日径流预测模型。首先,利用经验模态分解将日径流系列分解为若干子... 准确的径流预测是水资源开发利用的重要依据,但预测难度大。为提高日径流预测精度,以榕江流域南河东桥园站日径流为例,建立了经验模态分解(EMD)和支持向量机(SVM)耦合的日径流预测模型。首先,利用经验模态分解将日径流系列分解为若干子过程,再采用支持向量机深度学习模型分别对每一个子过程进行预测,最后将每个预测结果相加得到原日径流数据的预测结果。研究表明:EMD-SVM组合模型相对于SVM、BP、LSTM单模型具有更好的预测性能。 展开更多
关键词 日径流预测 经验模态分解 支持向量机 组合模型 预测精度 榕江流域
下载PDF
基于多元经验模态分解的旋转机械早期故障诊断方法 被引量:66
11
作者 武哲 杨绍普 刘永强 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第2期241-248,共8页
针对旋转机械早期微弱故障诊断问题,提出了基于多元经验模态分解的旋转机械早期故障诊断新方法。首先将多个加速度传感器合理布置在轴承座的关键位置,同步采集多通道振动信息;再利用多元经验模态分解同时对多通道振动信号进行自适应分解... 针对旋转机械早期微弱故障诊断问题,提出了基于多元经验模态分解的旋转机械早期故障诊断新方法。首先将多个加速度传感器合理布置在轴承座的关键位置,同步采集多通道振动信息;再利用多元经验模态分解同时对多通道振动信号进行自适应分解,得到一系列多元IMF分量;最后,依据峭度准则和相关系数从中选取包含故障主要信息的IMF分量进行信号重构,提取故障特征。多元经验模态分解方法克服了EMD等方法在进行多通道数据融合时缺乏理论依据的局限性。仿真信号和旋转机械故障信号的实验结果表明,该方法明显优于EEMD方法,对齿轮和滚动轴承故障的检测精度更高,可以在强背景噪声情况下更好地提取出故障冲击特征。 展开更多
关键词 旋转机械 多元经验模态分解 自适应 峭度准则 故障诊断
下载PDF
基于噪声辅助多元经验模态分解和多尺度形态学的滚动轴承故障诊断方法 被引量:17
12
作者 武哲 杨绍普 +2 位作者 任彬 马新娜 张建超 《振动与冲击》 EI CSCD 北大核心 2016年第4期127-133,共7页
为了从强噪背景中提取滚动轴承微弱故障特征,提出一种基于噪声辅助多元经验模态分解(Noise Assisted Multivariate Empirical Mode Decomposition,NAMEMD)和数学形态学的滚动轴承故障诊断方法。NAMEMD是新提出的一种基于噪声辅助数据分... 为了从强噪背景中提取滚动轴承微弱故障特征,提出一种基于噪声辅助多元经验模态分解(Noise Assisted Multivariate Empirical Mode Decomposition,NAMEMD)和数学形态学的滚动轴承故障诊断方法。NAMEMD是新提出的一种基于噪声辅助数据分析方法,其克服了集成经验模态分解的模态混淆和运算量大等问题。将NAMEMD与多尺度形态学相结合应用于滚动轴承故障诊断。该方法首先利用NAMEMD将多分量调频调幅故障信号自适应分解为一系列IMF分量;其次,选取能量高的IMF分量求和重构;最后利用多尺度形态学差值滤波器提取信号的故障特征频率。为了验证理论的正确性,进行了仿真试验和轴承故障试验,并与EEMD和包络解调进行了比较,结果表明该方法在进一步降低模态混叠效应的同时,明显提高了运算速度,对滚动轴承外圈、内圈和滚子故障的检测精度更高,能够清晰地提取出故障信号的故障特征频率。 展开更多
关键词 噪声辅助多元经验模态分解 模态混叠 多尺度形态学 滚动轴承 故障诊断
下载PDF
利用窄带噪声辅助多元经验模态分解算法检测换流变压器用有载分接开关机械状态 被引量:26
13
作者 段若晨 王丰华 +1 位作者 周荔丹 姚钢 《电工技术学报》 EI CSCD 北大核心 2017年第10期182-189,共8页
为有效检测换流变压器用有载分接开关的机械状态,提出一种窄带噪声辅助多元经验模态分解的方法对有载分接开关切换过程中采集到的多通道振动信号进行分析。具体应用时,在原始多通道振动信号中增加若干通道窄带噪声信号,并在统一高维超... 为有效检测换流变压器用有载分接开关的机械状态,提出一种窄带噪声辅助多元经验模态分解的方法对有载分接开关切换过程中采集到的多通道振动信号进行分析。具体应用时,在原始多通道振动信号中增加若干通道窄带噪声信号,并在统一高维超球面坐标系下进行分解计算,从而在有效抑制经验模态分解过程中模态混叠现象的同时,极大提高了多维振动信号分解的准确性并降低了运算复杂性。进而根据区间最大功率特征计算固有模态函数的功率矩阵,对有载分接开关的机械特征进行描述。对有载分接开关样机正常与典型机械故障时振动信号的计算结果表明,其不同工况下的功率特征有较大区别,所定义的矩阵相似度指标可较好地衡量有载分接开关典型故障时的振动差异程度。此外,触头松动时与正常工况的相似度指标低于绝缘板松动故障,说明触头松动故障对有载分接开关切换过程的影响更为明显。 展开更多
关键词 换流变压器 有载分接开关 多元经验模态分解 窄带噪声 功率矩阵相似度
下载PDF
基于多元经验模态分解互近似熵及GG聚类的轴承故障诊断 被引量:8
14
作者 张淑清 李威 +3 位作者 张立国 胡永涛 钱磊 姜万录 《中国机械工程》 EI CAS CSCD 北大核心 2016年第24期3362-3367,共6页
提出了一种基于多元经验模态分解(Multi-EMD)、互近似熵和GG聚类的滚动故障轴承诊断方法。首先,将振动信号进行多元经验模态分解,得到若干个内禀模态函数(IMF)分量和一个趋势项。然后,将IMF分量分别与原始信号进行相关性分析,筛选出前7... 提出了一种基于多元经验模态分解(Multi-EMD)、互近似熵和GG聚类的滚动故障轴承诊断方法。首先,将振动信号进行多元经验模态分解,得到若干个内禀模态函数(IMF)分量和一个趋势项。然后,将IMF分量分别与原始信号进行相关性分析,筛选出前7个含主要特征信息的IMF分量,并将筛选的IMF分量的互近似熵作为特征向量。最后,将特征向量输入到GG模糊分类器中进行聚类识别。通过聚类三维图,对两种算法机械运行的4种状态进行了对比,验证了多元经验模态分解方法不仅可解决采样的不均衡问题,而且可解决EMD算法聚类的混叠问题。 展开更多
关键词 轴承故障诊断 多元经验模态分解 互近似熵 GG聚类
下载PDF
基于经验模态分解和支持向量机的短期风电功率组合预测模型 被引量:196
15
作者 叶林 刘鹏 《中国电机工程学报》 EI CSCD 北大核心 2011年第31期102-108,共7页
针对风速序列随时间、空间呈现非平稳性变化的特征,提出一种基于经验模态分解(empirical mode decomposition,EMD)和支持向量机(support vector machine,SVM)的EMD-SVM短期风电功率组合预测方法。该方法首先利用EMD将风速序列分解... 针对风速序列随时间、空间呈现非平稳性变化的特征,提出一种基于经验模态分解(empirical mode decomposition,EMD)和支持向量机(support vector machine,SVM)的EMD-SVM短期风电功率组合预测方法。该方法首先利用EMD将风速序列分解为一系列相对平稳的分量,以减少不同特征信息间的相互影响;然后利用SVM法对各分量建立预测模型,针对各序列自身特点选择不同的核函数和相关参数来处理各组不同数据,以提高单个模型预测精度。最后将风速预测结果叠加并输入功率转化曲线以得到风电功率预测结果。研究结果表明,EMD-SVM组合预测模型能更好地跟踪风电功率的变化,其预测误差比单一统计模型降低了5%~10%,有效地提高了短期风电功率预测的精度。 展开更多
关键词 经验模态分解 支持向量机 风速 短期风电功率预测 组合预测模型
下载PDF
基于经验模态分解和灰色关联度分析的仿真模型验证方法 被引量:14
16
作者 焦松 李伟 杨明 《系统工程与电子技术》 EI CSCD 北大核心 2013年第12期2613-2618,共6页
比较分析仿真输出与参考输出之间的差异是仿真模型验证的一种常用手段。为解决系统输出为非平稳快变数据的仿真模型验证问题,提出了基于经验模态分解和灰色关联分析的验证方法。首先采用经验模态分解方法将仿真输出和参考输出均分解为... 比较分析仿真输出与参考输出之间的差异是仿真模型验证的一种常用手段。为解决系统输出为非平稳快变数据的仿真模型验证问题,提出了基于经验模态分解和灰色关联分析的验证方法。首先采用经验模态分解方法将仿真输出和参考输出均分解为趋势项和平稳项两部分,然后从位置差异和外形差异两方面刻画趋势项之间的差异,用谱密度差异刻画平稳项之间的差异,再者采用熵权法确定各类差异的权重,最后基于灰色关联度分析综合三类差异得到验证结果。通过实例应用,验证了方法的有效性。 展开更多
关键词 模型验证 经验模态分解 熵权 灰色关联度分析
下载PDF
基于集合经验模态分解和支持向量机的短期风速预测模型 被引量:9
17
作者 祝晓燕 张金会 +1 位作者 付士鹏 朱霄珣 《华北电力大学学报(自然科学版)》 CAS 北大核心 2013年第5期60-64,共5页
针对风电场对短期风速的准确预测的要求,建立了一种基于集合模态分解(Ensemble Empirical Mode Decomposition,EEMD)和粒子群算法(Particle Swarm Optimization,PSO)优化支持向量机(Support Vector Machine,SVM)的预测模型。该模型首先... 针对风电场对短期风速的准确预测的要求,建立了一种基于集合模态分解(Ensemble Empirical Mode Decomposition,EEMD)和粒子群算法(Particle Swarm Optimization,PSO)优化支持向量机(Support Vector Machine,SVM)的预测模型。该模型首先对非平稳的风速时间序列进行EEMD分解,分解为一系列的相对平稳的分量;然后SVM对各个分量进行预测,针对各个分量的特点利用PSO对SVM进行参数的优化,对各个分量的SVM预测模型选取最佳的参数组合;最后将分量的预测结果叠加输出最后的风速预测结果。结果表明该预测模型比SVM直接预测模型精度高,达到了预测要求。 展开更多
关键词 集合经验模态分解 支持向量机 粒子群算法 预测模型
下载PDF
基于集成经验模态分解和量子细菌觅食优化的风速预测模型 被引量:6
18
作者 章国勇 伍永刚 张洋 《太阳能学报》 EI CAS CSCD 北大核心 2015年第12期2930-2936,共7页
基于风速时间序列内在规律特性,为改善经验模态分解(EMD)模态混叠现象,提出基于集成经验模态分解(EEMD)的风速组合预测模型。同时,针对预测模型参数选择问题,将量子力学的思想引入细菌觅食优化的繁殖算子中,结合量子空间下概率分布模型... 基于风速时间序列内在规律特性,为改善经验模态分解(EMD)模态混叠现象,提出基于集成经验模态分解(EEMD)的风速组合预测模型。同时,针对预测模型参数选择问题,将量子力学的思想引入细菌觅食优化的繁殖算子中,结合量子空间下概率分布模型完成参数寻优。4种算法的参数优化结果表明,改进算法具有更好的全局寻优性能并能提高模型泛化能力。将其应用于组合预测模型中,仿真表明,基于EEMD预测模型能较好地消除EMD的模态混叠现象,具有更高的预测精度。 展开更多
关键词 风速预测模型 模态混叠 总体经验模态分解 细菌觅食优化
下载PDF
基于多元经验模态分解的电力系统强迫振荡源定位 被引量:7
19
作者 姜涛 刘博涵 +1 位作者 李雪 李国庆 《中国电机工程学报》 EI CSCD 北大核心 2022年第22期8063-8074,共12页
强迫振荡是威胁电力系统安全稳定运行的重要因素之一,准确、高效定位强迫振荡源是抑制强迫振荡的关键,但现有基于广域量测信息的强迫振荡源定位方法实现较为复杂且效率和精度有待提升。为此,该文提出一种基于多元经验模态分解的电力系... 强迫振荡是威胁电力系统安全稳定运行的重要因素之一,准确、高效定位强迫振荡源是抑制强迫振荡的关键,但现有基于广域量测信息的强迫振荡源定位方法实现较为复杂且效率和精度有待提升。为此,该文提出一种基于多元经验模态分解的电力系统强迫振荡源定位方法。该方法首先对发电机的广域量测信息进行多元经验模态分解;然后,计算分解后各本征模函数分量的Teager能量值及能量权重,提取表征强迫振荡模式的关键本征模函数分量;基于提取的本征模函数分量,计算各发电机的耗散能量流,进而根据耗散能量流实现强迫振荡源定位;最后,分别利用WECC179-节点测试系统仿真数据和辽宁电网PMU实测数据对所提方法进行分析验证,结果表明,所提方法可准确定位电力系统强迫振荡源。 展开更多
关键词 电力系统 强迫振荡 振荡源定位 多元经验模态分解 耗散能量流
下载PDF
基于经验模态分解和计量经济学模型及混沌模型的短期负荷预测 被引量:11
20
作者 张金良 谭忠富 《电网技术》 EI CSCD 北大核心 2011年第9期181-187,共7页
为提高短期电力负荷的预测精度,提出一种基于经验模态分解、计量经济学模型和神经网络混沌模型的组合预测方法。首先,利用经验模态分解将负荷序列分解成一系列本征模态函数及余项;其次,针对不同分量的特性,建立不同的模型进行预测;最后... 为提高短期电力负荷的预测精度,提出一种基于经验模态分解、计量经济学模型和神经网络混沌模型的组合预测方法。首先,利用经验模态分解将负荷序列分解成一系列本征模态函数及余项;其次,针对不同分量的特性,建立不同的模型进行预测;最后,将所有分量的预测值求和作为最终的预测结果。以美国宾夕法尼亚州–新泽西州–马里兰州(Pennsylvania-New Jersey-Maryland,PJM)电力市场为实例,验证了普通日负荷和特殊日负荷的预测效果,此外,将该方法与其他预测方法进行了比较,算例表明,该方法具有较高的预测精度。 展开更多
关键词 负荷预测 经验模态分解 计量经济学模型 神经网络混沌模型
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部