FT Ⅰ (AAAAGGGGAAGCAGAG), a poly purine ele-ment within the myloid-lineage specific enhancer (En 1) of the mouse myeloperoxidase gene [1, 2] has been fur-ther characterised. 1, FT Ⅰ functions as a myeloid-lineage spe...FT Ⅰ (AAAAGGGGAAGCAGAG), a poly purine ele-ment within the myloid-lineage specific enhancer (En 1) of the mouse myeloperoxidase gene [1, 2] has been fur-ther characterised. 1, FT Ⅰ functions as a myeloid-lineage specific transcription regulatory element; 2, WEHI 3BD+ cells have higher binding activity to FT Ⅰ and express the proteins which could form the unique DNA-protein com-plex(es) of FT Ⅰ;. 3, The essential sequence for the specific DNA-protein interactions of FT Ⅰ is AAAAGGGGAAGC; 4, South-western analysis in conjunction with the compe-tition assay of the proteins binding to FT Ⅰ, has revealed a 28 kd protein in WEHI 3BD+ cells that displays the properties of the putative transcription factor which acts through FT Ⅰ. These new findings have demonstrated both the functional myeloid-lineage specificity and the novelty of FT Ⅰ.展开更多
This work proved that biomass-based polyols (sorbitol, xylitol, erythritol, glycerol and ethanediol) were able to be converted into high-value chemical (p-xylene) by catalytic cracking of polyols, alkylation of aromat...This work proved that biomass-based polyols (sorbitol, xylitol, erythritol, glycerol and ethanediol) were able to be converted into high-value chemical (p-xylene) by catalytic cracking of polyols, alkylation of aromatics, and the isomerization of xylenes over the SiO2-modified zeolites. Compared to the conventional HZSM-5 zeolite, the SiO2-containing zeolites considerably increased the selectivity and yield of p-xylene due to the reduction of external surface acidity and the narrowing of pore entrance. The influences of the methanol additive, reaction temperature, and types of polyols on the selectivity and yield of p-xylene were investigated in detail. Catalytic cracking of polyols with methanol significantly enhanced the production of p-xylene by the alkylation of toluene with methanol. The highest p-xylene yield of 10.9 C-mol% with a p-xylene/xylenes ratio of 91.1% was obtained over the 15wt%SiO2/HZSM-5 catalyst. The reaction pathway for the formation of p-xylene was addressed according to the study of the key reactions and the characterization of catalysts.展开更多
This study aims to raise policy suggestions to China' s openness in cultural industries by doing cross-country comparison. Due to the dual attributes of cultural industries, the openness of cultural industries has de...This study aims to raise policy suggestions to China' s openness in cultural industries by doing cross-country comparison. Due to the dual attributes of cultural industries, the openness of cultural industries has demonstrated special features globally. To promote the development of China' s cultural industries, the effort should be paid to transfer culture resources into cultural products, to distinguish the responsibility of government and market, to integrate the value chain, to diversify revenue sources and to foster open environment.展开更多
文摘FT Ⅰ (AAAAGGGGAAGCAGAG), a poly purine ele-ment within the myloid-lineage specific enhancer (En 1) of the mouse myeloperoxidase gene [1, 2] has been fur-ther characterised. 1, FT Ⅰ functions as a myeloid-lineage specific transcription regulatory element; 2, WEHI 3BD+ cells have higher binding activity to FT Ⅰ and express the proteins which could form the unique DNA-protein com-plex(es) of FT Ⅰ;. 3, The essential sequence for the specific DNA-protein interactions of FT Ⅰ is AAAAGGGGAAGC; 4, South-western analysis in conjunction with the compe-tition assay of the proteins binding to FT Ⅰ, has revealed a 28 kd protein in WEHI 3BD+ cells that displays the properties of the putative transcription factor which acts through FT Ⅰ. These new findings have demonstrated both the functional myeloid-lineage specificity and the novelty of FT Ⅰ.
基金supported by the National Key R&D Program of China (No.2018YFB1501404)
文摘This work proved that biomass-based polyols (sorbitol, xylitol, erythritol, glycerol and ethanediol) were able to be converted into high-value chemical (p-xylene) by catalytic cracking of polyols, alkylation of aromatics, and the isomerization of xylenes over the SiO2-modified zeolites. Compared to the conventional HZSM-5 zeolite, the SiO2-containing zeolites considerably increased the selectivity and yield of p-xylene due to the reduction of external surface acidity and the narrowing of pore entrance. The influences of the methanol additive, reaction temperature, and types of polyols on the selectivity and yield of p-xylene were investigated in detail. Catalytic cracking of polyols with methanol significantly enhanced the production of p-xylene by the alkylation of toluene with methanol. The highest p-xylene yield of 10.9 C-mol% with a p-xylene/xylenes ratio of 91.1% was obtained over the 15wt%SiO2/HZSM-5 catalyst. The reaction pathway for the formation of p-xylene was addressed according to the study of the key reactions and the characterization of catalysts.
文摘This study aims to raise policy suggestions to China' s openness in cultural industries by doing cross-country comparison. Due to the dual attributes of cultural industries, the openness of cultural industries has demonstrated special features globally. To promote the development of China' s cultural industries, the effort should be paid to transfer culture resources into cultural products, to distinguish the responsibility of government and market, to integrate the value chain, to diversify revenue sources and to foster open environment.