Here we report a femtosecond laser direct writing(a precise 3D printing also known as two-photon polymerization lithography) of hybrid organic-inorganic SZ2080^(TM)pre-polymer without using any photo-initiator and app...Here we report a femtosecond laser direct writing(a precise 3D printing also known as two-photon polymerization lithography) of hybrid organic-inorganic SZ2080^(TM)pre-polymer without using any photo-initiator and applying ~100 fs oscillator operating at 517 nm wavelength and 76 MHz repetition rate. The proof of concept was experimentally demonstrated and benchmarking 3D woodpile nanostructures, micro-scaffolds, free-form micro-object “Benchy” and bulk micro-cubes are successfully produced. The essential novelty underlies the fact that non-amplified laser systems delivering just 40-500 p J individual pulses are sufficient for inducing localized cross-linking reactions within hundreds of nanometers in cross sections. And it is opposed to the prejudice that higher pulse energies and lower repetition rates of amplified lasers are necessary for structuring non-photosensitized polymers. The experimental work is of high importance for fundamental understanding of laser enabled nanoscale 3D additive manufacturing and widens technology’ s field of applications where the avoidance of photo-initiator is preferable or is even a necessity, such as micro-optics, nano-photonics, and biomedicine.展开更多
基金Project(S-MIP-20-17) supported by the Research Council of LithuaniaProject(871124) supported by the EU Horizon 2020, Research and Innovation program LASERLAB-EUROPE JRA。
文摘Here we report a femtosecond laser direct writing(a precise 3D printing also known as two-photon polymerization lithography) of hybrid organic-inorganic SZ2080^(TM)pre-polymer without using any photo-initiator and applying ~100 fs oscillator operating at 517 nm wavelength and 76 MHz repetition rate. The proof of concept was experimentally demonstrated and benchmarking 3D woodpile nanostructures, micro-scaffolds, free-form micro-object “Benchy” and bulk micro-cubes are successfully produced. The essential novelty underlies the fact that non-amplified laser systems delivering just 40-500 p J individual pulses are sufficient for inducing localized cross-linking reactions within hundreds of nanometers in cross sections. And it is opposed to the prejudice that higher pulse energies and lower repetition rates of amplified lasers are necessary for structuring non-photosensitized polymers. The experimental work is of high importance for fundamental understanding of laser enabled nanoscale 3D additive manufacturing and widens technology’ s field of applications where the avoidance of photo-initiator is preferable or is even a necessity, such as micro-optics, nano-photonics, and biomedicine.