期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
多光谱图像技术在土壤酸碱度检测中的应用 被引量:7
1
作者 李云 杨海清 《红外》 CAS 2014年第3期43-48,共6页
提出了一种利用多光谱图像的颜色特征对土壤酸碱度(pH值)进行快速无损检测的方法。首先,利用2CCD多光谱成像仪获取每个土壤样本的R、G、B、NIR图像各一幅,并对多光谱图像进行颜色空间转换,即从RGB色彩空间分别转换到HSV颜色空间和Lab颜... 提出了一种利用多光谱图像的颜色特征对土壤酸碱度(pH值)进行快速无损检测的方法。首先,利用2CCD多光谱成像仪获取每个土壤样本的R、G、B、NIR图像各一幅,并对多光谱图像进行颜色空间转换,即从RGB色彩空间分别转换到HSV颜色空间和Lab颜色空间;然后提取不同颜色空间中多光谱图像的颜色特征;最后,分别将提取的颜色特征作为模型的输入变量,建立PLS和LS-SVM算法的土壤酸碱度预测模型。实验结果表明,利用多光谱图像技术对土壤酸碱度进行检测是可行的。预测模型的最佳结果如下:决定系数(R^2)为0.91,预测均方根误差(RMSEP)为0.34. 展开更多
关键词 多光谱图像技术 土壤 酸碱度 颜色特征
下载PDF
应用多光谱图像技术获取黄瓜叶片含氮量及叶面积指数 被引量:16
2
作者 刘飞 王莉 何勇 《光学学报》 EI CAS CSCD 北大核心 2009年第6期1616-1620,共5页
为了快速准确地获取黄瓜叶片的含氮量和叶面积指数等生长信息,提出了采用多光谱图像技术对黄瓜生长信息进行检测的新方法。利用标定板建立黄瓜叶片光谱反射率同图像灰度值之间的线性公式。通过多光谱相机对样本在绿光、红光和近红外三... 为了快速准确地获取黄瓜叶片的含氮量和叶面积指数等生长信息,提出了采用多光谱图像技术对黄瓜生长信息进行检测的新方法。利用标定板建立黄瓜叶片光谱反射率同图像灰度值之间的线性公式。通过多光谱相机对样本在绿光、红光和近红外三个通道的图像进行处理,获得叶片样本在每一通道的灰度值,然后根据标定板所建立的灰度值与反射率间的经验线性公式将对应的灰度值转为反射率值,并由反射率值计算出黄瓜的植被指数。采用最小二乘-支持向量机(LS-SVM)建立植被指数同叶片含氮景以及叶面积指数问的拟合模型。结果表明植被指数同叶片含氮量和叶面积指数的拟合相关系数分别为0.8665和0.8553。表明植被指数与黄瓜的叶片含氮量和叶面积指数具有紧密的相关性,也为快速采集黄瓜生长信息提供了一种新方法。 展开更多
关键词 医用光学与生物技术 多光谱图像技术 黄瓜 含氮量 叶面积指数 最小二乘-支持向量机
原文传递
多光谱图像技术在食品品质检测中的应用与发展 被引量:3
3
作者 叶昱程 应义斌 《中国食品学报》 EI CAS CSCD 2003年第4期89-92,共4页
多光谱技术与多光谱图像技术作为一种食品品质检测的新技术,其应用已越来越广泛。本文在阐述多光谱技术与多光谱图像技术的工作原理、系统组成和特点的基础上,介绍了国外多光谱图像技术在食品品质检测中的应用和最新研究动态,以促进我... 多光谱技术与多光谱图像技术作为一种食品品质检测的新技术,其应用已越来越广泛。本文在阐述多光谱技术与多光谱图像技术的工作原理、系统组成和特点的基础上,介绍了国外多光谱图像技术在食品品质检测中的应用和最新研究动态,以促进我国利用多光谱图像技术进行食品品质检测的研究。 展开更多
关键词 多光谱图像技术 食品 品质检测 工作原理 应用
原文传递
Semi-supervised kernel FCM algorithm for remote sensing image classification
4
作者 刘小芳 HeBinbin LiXiaowen 《High Technology Letters》 EI CAS 2011年第4期427-432,共6页
These problems of nonlinearity, fuzziness and few labeled data were rarely considered in traditional remote sensing image classification. A semi-supervised kernel fuzzy C-means (SSKFCM) algorithm is proposed to over... These problems of nonlinearity, fuzziness and few labeled data were rarely considered in traditional remote sensing image classification. A semi-supervised kernel fuzzy C-means (SSKFCM) algorithm is proposed to overcome these disadvantages of remote sensing image classification in this paper. The SSKFCM algorithm is achieved by introducing a kernel method and semi-supervised learning technique into the standard fuzzy C-means (FCM) algorithm. A set of Beijing-1 micro-satellite's multispectral images are adopted to be classified by several algorithms, such as FCM, kernel FCM (KFCM), semi-supervised FCM (SSFCM) and SSKFCM. The classification results are estimated by corresponding indexes. The results indicate that the SSKFCM algorithm significantly improves the classification accuracy of remote sensing images compared with the others. 展开更多
关键词 remote sensing image classification semi-supervised kernel fuzzy C-means (SSKFCM)algorithm Beijing-1 micro-satellite semi-supcrvisod learning tochnique kernel method
下载PDF
Assessment of Soil Water Content and Remote Sensing Techniques--Case Study of Kiwi Orchard (Portugal)
5
作者 Celestina Maria Gago Pedras 《Journal of Agricultural Science and Technology(A)》 2014年第1期33-42,共10页
Soil water management plays an important role in the response of kiwi plants (Actinidia deliciosa A. Chev.). In GuimarSes district soil moisture content is monitored in kiwifi'uit orchard as a routine parameter. Dr... Soil water management plays an important role in the response of kiwi plants (Actinidia deliciosa A. Chev.). In GuimarSes district soil moisture content is monitored in kiwifi'uit orchard as a routine parameter. Drip irrigation system is the method used. This crop tends to have high water requirements and extends over a wide area in Portugal, requiring innovative solutions to achieve better benefits. A method that correlates soil and crop conditions with the parameters of remote sensing was established in this study. To assess the level of accuracy of soil moisture measurements from satellites, it is important to compare satellite image with ground real data (namely the frequency domain reflectometry (FDR), Diviner 2000). The combination of multispectral satellite images produces an image representative of vegetation vigour, density and health. In this study, Landsat satellite images (2011 and 2013) are used and vegetation indexes are calculated for different periods of time, using the software Idrisi Taiga. The information of vegetation indexes is crossed with data of soil moisture, in situ, to establish a correlation between both of them. Thus, it allows to improve the soil water content monitoring, in particular for the soil water balance optimization and its effect on kiwi biornass production. 展开更多
关键词 Remote sensing kiwi fruit vegetative indexes soil water content.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部