期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
冬小麦SPAD值无人机可见光和多光谱植被指数结合估算 被引量:29
1
作者 牛庆林 冯海宽 +3 位作者 周新国 朱建强 雍蓓蓓 李会贞 《农业机械学报》 EI CAS CSCD 北大核心 2021年第8期183-194,共12页
SPAD(Soil and plant analyzer development)值能够反映作物叶片叶绿素含量,是表征作物健康状态的重要指标。采用无人机搭载可见光和多光谱相机同步获取冬小麦可见光和多光谱影像,同时获取冬小麦叶片SPAD值,探究了可见光和多光谱植被指... SPAD(Soil and plant analyzer development)值能够反映作物叶片叶绿素含量,是表征作物健康状态的重要指标。采用无人机搭载可见光和多光谱相机同步获取冬小麦可见光和多光谱影像,同时获取冬小麦叶片SPAD值,探究了可见光和多光谱植被指数与SPAD值的关系,将可见光植被指数与多光谱植被指数相结合进行SPAD值估算,利用逐步回归和随机森林回归方法估算SPAD值,并将估算结果进行对比,筛选出冬小麦叶片SPAD值的最优估算模型。结果表明,SPAD值与可见光植被指数(IKAW和RBRI)、多光谱植被指数(GNDVI、CI、GMSR和GOSAVI)具有较好的相关性,与可见光植被指数(CIVE)和多光谱植被指数(GNDVI)的相结合指数具有较好的相关性,其估算模型的R^(2)为0.89,模型验证的RMSE为2.55,nRMSE为6.21%。研究表明,可见光植被指数与多光谱植被指数相结合指数逐步回归和随机森林回归模型估算SPAD值的精度高于仅用可见光植被指数或多光谱植被指数,采用逐步回归的估算模型R^(2)为0.91,模型验证R^(2)、RMSE和nRMSE分别为0.89、2.32和5.64%,采用随机森林回归的估算模型R^(2)为0.90,模型验证R^(2)、RMSE和nRMSE分别为0.88、2.51和6.12%。 展开更多
关键词 冬小麦 SPAD值 可见光植被指数 多光谱植被指数 逐步回归 随机森林回归
下载PDF
基于Hyperion植被指数的干旱地区稀疏植被覆盖度估测 被引量:17
2
作者 李晓松 李增元 +3 位作者 高志海 白黎娜 王琫瑜 李世明 《北京林业大学学报》 CAS CSCD 北大核心 2010年第3期95-100,共6页
受稀疏植被与明亮土壤背景影响,干旱地区植被覆盖精确遥感估测难度较大。以Hyperion影像为数据源,选取甘肃省民勤绿洲-荒漠过渡带为研究区,系统比较了利用不同类型高光谱及多光谱植被指数估测干旱地区稀疏植被覆盖度的能力,以期确定干... 受稀疏植被与明亮土壤背景影响,干旱地区植被覆盖精确遥感估测难度较大。以Hyperion影像为数据源,选取甘肃省民勤绿洲-荒漠过渡带为研究区,系统比较了利用不同类型高光谱及多光谱植被指数估测干旱地区稀疏植被覆盖度的能力,以期确定干旱地区稀疏植被覆盖度估测的最佳植被指数。不同植被指数估测稀疏植被覆盖度的能力利用线性回归R2及留一交叉验证的均方根误差进行比较,结果表明:高光谱植被指数估测稀疏植被覆盖度的能力显著优于相应的多光谱植被指数,抗大气植被指数(ARVI)及抗土壤和大气植被指数(SARVI)表现明显优于归一化植被指数(NDVI)与土壤调节植被指数(SAVI),其中以基于833.3nm/640.5nm波段组合的ARVI表现最佳,R2可达0.7294,均方根误差(RMSE)仅为5.5488。 展开更多
关键词 稀疏植被覆盖度 多光谱植被指数 光谱植被指数 交叉验证
下载PDF
基于无人机多时相植被指数的冬小麦产量估测 被引量:23
3
作者 程千 徐洪刚 +2 位作者 曹引波 段福义 陈震 《农业机械学报》 EI CAS CSCD 北大核心 2021年第3期160-167,共8页
通过无人机搭载多光谱相机,对不同水分亏缺条件下冬小麦多个生育期进行遥感监测,采用不同种类多光谱植被指数表征冬小麦的生长特征,分析了植被指数与冬小麦产量的相关关系,并利用多时相植被指数构建产量估测数据集,采用偏最小二乘回归... 通过无人机搭载多光谱相机,对不同水分亏缺条件下冬小麦多个生育期进行遥感监测,采用不同种类多光谱植被指数表征冬小麦的生长特征,分析了植被指数与冬小麦产量的相关关系,并利用多时相植被指数构建产量估测数据集,采用偏最小二乘回归、支持向量机回归和随机森林回归3种机器学习算法进行冬小麦产量估测。结果表明,随着冬小麦的生长,多个植被指数与产量的相关性不断增强,灌浆末期相关系数达到0.7,植被指数与产量的线性回归决定系数也达到最大。多时相植被指数反映了冬小麦生长的变化特征,进一步提高了冬小麦产量估测精度,采用开花期和灌浆初期的多时相植被指数进行估产比采用单个生育期的植被指数估测产量的精度高,采用偏最小二乘回归模型的估测精度R^(2)提高约0.021,支持向量机回归模型R^(2)提高约0.015,随机森林回归模型R^(2)提高约0.051。采用灌浆末期的多时相植被指数,3种模型均有较高的估测精度,偏最小二乘回归模型估测精度最高时的R^(2)、RMSE分别为0.459、1 822.746 kg/hm^(2),支持向量机回归模型估测精度最高时的R^(2)、RMSE分别为0.540、1 676.520 kg/hm^(2),随机森林回归模型估测精度最高时的R^(2)、RMSE分别为0.560、1 633.896 kg/hm^(2),本文数据集训练的随机森林回归模型估测精度最高,且稳定性更好。 展开更多
关键词 冬小麦 产量估测 多光谱植被指数 无人机
下载PDF
无人机多源光谱反演大田夏玉米叶面积指数 被引量:9
4
作者 徐洪刚 陈震 +3 位作者 程千 李宗鹏 李鹏 范永申 《灌溉排水学报》 CSCD 北大核心 2021年第8期42-49,共8页
【目的】研究多源光谱反演大田夏玉米叶面积指数(LAI)的效果。【方法】以大田夏玉米为研究对象,利用无人机获取试验区不同生育期热红外以及多光谱影像,提取热红外冠层温度(TC)以及多光谱植被指数,结合地面实测LAI数据,分析光谱数据与实... 【目的】研究多源光谱反演大田夏玉米叶面积指数(LAI)的效果。【方法】以大田夏玉米为研究对象,利用无人机获取试验区不同生育期热红外以及多光谱影像,提取热红外冠层温度(TC)以及多光谱植被指数,结合地面实测LAI数据,分析光谱数据与实测LAI之间的相关关系,并将TC与筛选出的11种植被指数作为输入变量,LAI作为输出变量利用多元线性回归、支持向量机和随机森林3个算法模型训练学习,建立了夏玉米LAI的反演模型。【结果】多光谱植被指数以及TC均与夏玉米LAI在P<0.0001水平上显著相关,相关系数均在0.5以上;RF算法于拔节期、喇叭口期、以及吐丝期3个生育期的LAI预测值与实测值的R2均高于MLR算法和SVM算法,对应的RMSE及NRMSE均低于MLR算法和SVM算法;融合热红外TC后的RF模型反演精度均有不同程度的提升,各生育期LAI预测值与实测值R2均大于同时期未融合TC的LAI反演模型。【结论】多光谱植被指数以及TC均与夏玉米LAI具有较强的相关性,且RF算法构建的夏玉米LAI反演模型精度优于MLR和SVM算法,同时TC的加入可以有效提升夏玉米LAI反演精度。 展开更多
关键词 夏玉米 无人机遥感 多光谱植被指数 热红外图像 叶面积指数 反演模型
下载PDF
机载多光谱LiDAR数据的地物分类方法 被引量:18
5
作者 潘锁艳 管海燕 《测绘学报》 EI CSCD 北大核心 2018年第2期198-207,共10页
机载多光谱LiDAR系统能够快速地获取大范围地表面上地物光谱和几何数据,并能够保证所获取的光谱与空间几何数据在空间和时间上相对完整和一致性。支持向量机(SVM)是一种基于小样本的学习方法,它避开了从归纳到演绎的传统分类过程。因此... 机载多光谱LiDAR系统能够快速地获取大范围地表面上地物光谱和几何数据,并能够保证所获取的光谱与空间几何数据在空间和时间上相对完整和一致性。支持向量机(SVM)是一种基于小样本的学习方法,它避开了从归纳到演绎的传统分类过程。因此,本文提出了基于SVM多光谱LiDAR数据的地物目标分类方法。该方法首先将多个独立波段的LiDAR数据融合为单一的、包含多个波段信息的点云数据,然后将融合后的点云内插为距离影像和多光谱影像,最后利用SVM进行多光谱LiDAR数据的地物覆盖分类。通过对加拿大Optech公司的Titan机载多光谱LiDAR数据的试验证明:相对于传统的单波段LiDAR数据,多光谱LiDAR数据可以获得较好的地物分类精度;比较试验发现SVM分类方法适用于多光谱LiDAR数据的地物分类。 展开更多
关键词 多光谱LiDAR SVM 地物分类 多光谱LiDAR植被指数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部