期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
多光谱激光点云卷积神经网络的地物分类研究 被引量:1
1
作者 邹晓亮 《测绘科学》 CSCD 北大核心 2021年第7期44-50,83,共8页
针对商用激光传感器Optech LiDAR Titan系统获取的多光谱激光点云数据进行地物分类试验的探索,该文提出一种基于卷积神经网络(CNN)模型的多光谱激光LiDAR点云数据地物分类方法。新数据源多光谱激光点云具有多通道和多次散射回波的典型特... 针对商用激光传感器Optech LiDAR Titan系统获取的多光谱激光点云数据进行地物分类试验的探索,该文提出一种基于卷积神经网络(CNN)模型的多光谱激光LiDAR点云数据地物分类方法。新数据源多光谱激光点云具有多通道和多次散射回波的典型特性,生成感兴趣的热力图,根据热力图特征值和nDSM辅助数据进行感兴趣地物分类。采用CNN模型学习结果与面向对象影像分析OBIA分类方法相结合对分类结果进行精化,并用随机采样参考点对地物分类结果进行精度评估,解决CNN模型分类的正确性和可靠性问题。实验表明,地物分类整体精度OA达到89.8%,Kappa值0.858,该方法在多光谱激光点云地物分类方面具有稳健性、有效性和通用性。 展开更多
关键词 多光谱激光点云 卷积神经网络 热力图 样本标注 地物分类 精度评估
原文传递
基于多光谱LiDAR数据的道路中心线提取 被引量:15
2
作者 袁鹏飞 黄荣刚 +1 位作者 胡平波 杨必胜 《地球信息科学学报》 CSCD 北大核心 2018年第4期452-461,共10页
针对城市三维激光点云中,道路与地面高程相差小、激光反射强度相近使得道路提取困难;广场、停车场等地物的高程、反射强度与道路极为相近,容易产生错误提取的问题。本文设计了一种描述道路条带信息的局部二进制特征(Stripe Local Binary... 针对城市三维激光点云中,道路与地面高程相差小、激光反射强度相近使得道路提取困难;广场、停车场等地物的高程、反射强度与道路极为相近,容易产生错误提取的问题。本文设计了一种描述道路条带信息的局部二进制特征(Stripe Local Binary Feature,SLBF),结合LiDAR数据中的三维信息和多光谱信息获得基于强度、密度和平坦度等统计特征(StatisticsBased Feature,SBF),并采用随机森林分类器实现了机载点云中道路面点云和非道路面点云的有效提取。通过欧式聚类精化道路点云和迭代腐蚀边界细化中心线,进而获得矢量化的道路中心线。以Waddenzee区域的多光谱机载点云数据进行实验验证,道路中心线提取结果的完整度达到94.15%,准确度达到97.95%,精度达到92.28%。实验结果表明,该方法可以有效地提取道路中心线,同时由于设计的特征具有不变性,能够适用于城市和林间小路等各种环境。 展开更多
关键词 多光谱机载激光 道路提取 局部二进制特征 随机森林分类器 矢量化
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部